
達思化學

課本 8

第 15 章 分析化學

artment of Health

早期用加

- → 54.1 儀器分析方法
- **54.2** 比色法
- ▶ 54.3 比色計如何運作
- 54.4 比色法的應用
- **54.5** 紅外光譜法

目錄

- ➡ 54.6 紅外光譜法是甚麼來的?
- → 54.7 不同鍵合的特徵吸收波數區域
- → 54.8 詮釋紅外光譜
- ➡ 54.9 紅外光譜的應用
- 54.10 質譜法
- 54.11 有關質譜的綜合資料

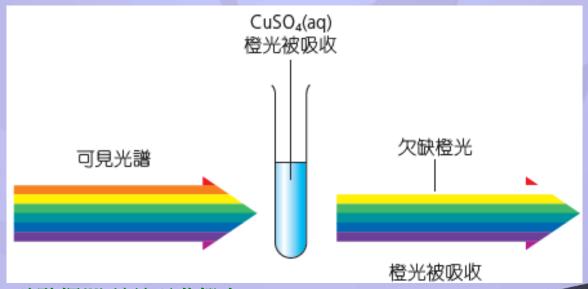
目錄

- → 54.12 從碎裂模式辨認碳化合物
- **54.13** 質譜法的應用
- → 54.14 利用結合技術鑑定未知碳化合物
- → 關鍵詞彙
- **摘要**
- → 按節練習

- ◆ 儀器分析方法依靠機器來分析物質,這些方法已成為在不同 範疇獲取資料的重要方法。
- ◆ 與傳統的分析方法(例如容量分析)相比,儀器分析方法有 很多優點,包括:
 - 快捷 儀器能在任何時間迅速地進行分析;
 - 準確度較高;
 - 靈敏度較高 儀器能分析非常少量的物質。
- ◆ 儀器的成本普遍偏高和需要由受過訓練的人士來操作。

> 54.2 比色法 (頁123)

- ◆ 電磁光譜函蓋所有的電磁輻射。
- ◆ 可見光譜是人類肉眼可看見的電磁光譜的部分。
- ◆ 白光是由可見光譜的所有顏色的光組成的。
- ◆ 可見光的波長介乎 400-700 納米之間。

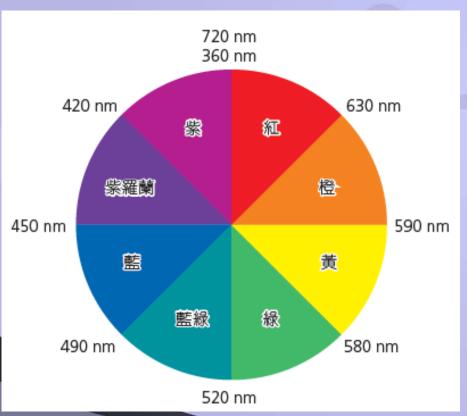

人類能看見的可見光譜

54.2 比色法 (頁123)

- ◆ 白光穿過硫酸銅(Ⅱ) 溶液時, 橙光被吸收。穿過的光含除橙光以外的所有光譜的顏色。
- ◆ 所以該溶液呈藍色(即是橙色的**互補色 (complementary colour)**)。

硫酸銅(II) 溶液吸收橙光

(這圖中的光譜只作說明,並非真實。)



54.2 比色法 (頁123)

- ◆ 對於觀察者來說,物質所呈的顏色是白光減去涉及物質會吸收 的光,即是被吸收的光的互補色。
- ◆ 色輪展示哪對顏色是互補的(即是在色輪中彼此相對的顏色)。

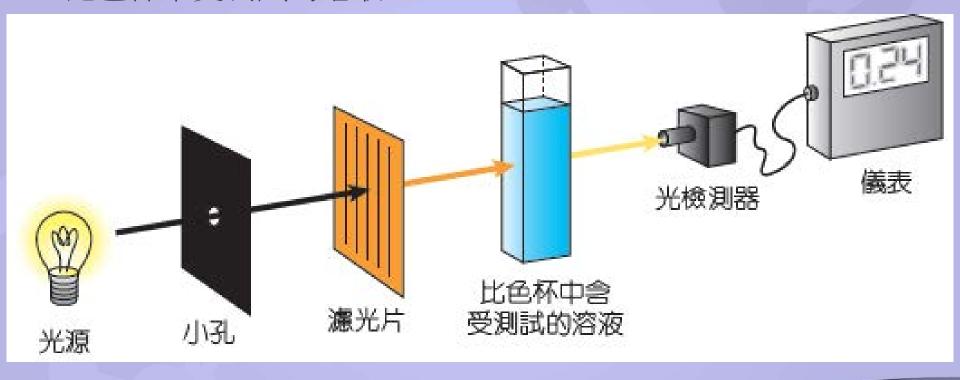
互補色是在色輪中彼此相對的顏色

⇒54.2 比色法 (頁123)

- ◆ 溶液的顏色取決於它所吸收的光的顏色,其顏色的強度 (intensity) 則取決於該溶液的濃度。
- ◆ 溶液愈濃,其顏色愈深,即是所吸收的光愈多。

比色法是根據溶劑中的化學物種吸收可見光譜某部分的輻射的能力,以測定該化學物種的濃度的技術。

◆ 利用稱為比色計 (colorimeter) 的儀器來進行比色測定。



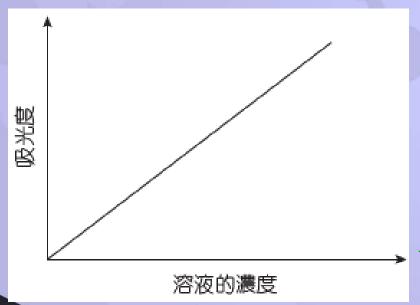
54.3 比色計如何運作(頁125)

◆ 來自光源的光經過濾光片後變成單色光。然後,該入射光穿過 比色杯中受測試的溶液。

比色計的組件

> 54.3 比色計如何運作(頁125)

- ◆ 濾光片的顏色必須對應受測試的溶液最大吸收的光的顏色,即 是濾光片的顏色應與受測試溶液的顏色為互補色。
- ◆ 例如,藍色濾光片可讓藍光通過。藍色的溶液不吸收藍光,如果選用藍色濾光片,吸收程度很低。所以應選用橙色濾光片,因為藍色的溶液對橙光的吸收最大。
- ◆ 通過比較入射光的強度(/₀)和光穿過樣本後的強度(/₅), 使用以下方程式計算該樣本的**吸光度 (absorbance)**(A):


$$A = \log\left(\frac{I_o}{I_s}\right)$$

54.3 比色計如何運作(頁125)

- ◆ 如果量度含溶質的一系列標準溶液的吸光度,並繪製吸光度對 濃度的坐標圖,可獲得如下圖展示的一條成正比的直線,這稱 為校準曲線 (calibration curve)。
- ◆ 這坐標圖用於從未知溶液樣本的吸光度來測定溶質的濃度。

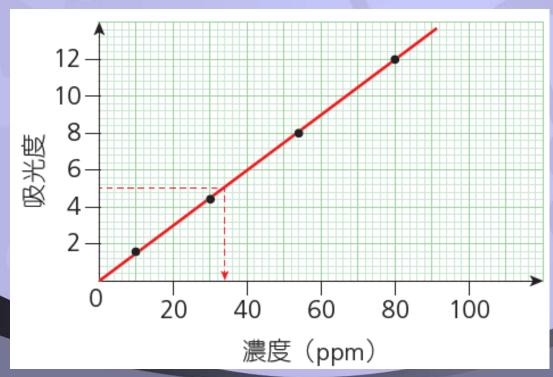
一系列標準溶液的吸光度對其相應的濃度的校準曲線

- ◆ 高錳酸鉀水溶液是紫色的,其濃度可通過比色法測定。
- ◆ 比色法可用於跟隨酸化高錳酸鉀水溶液氧化乙二酸鈉水溶液的 反應進度。
- ◆ 比色法亦可用於測定植物的營養素的濃度,例如泥土中的氨和 磷的濃度。
- ◆ 比色法也可用於工業上,例如彩色印刷、紡織和製造油漆等; 更廣泛用於食品和製藥行業。

測定汽水的食用色素的含量參

測定汽水中食用色素的含量

- ◆ 為了吸引顧客,生產商經常把食用色素添加到包裝食品中, 使產品的顏色變得更吸引。
- ◆ 例如,日落黃是常用的食用色素,可以在一些市面有售的產品中找到。
- ◆ 日落黃使產品的色彩變橙。


日落黃

- ◆ 你獲提供一個以綠色 LED 為光源的 LED 比色計 和一標準的日落黃溶液(濃度為100 ppm)。
- ◆ 首先製備一系列不同濃度的標準日落黃溶液,通過測定這些標準溶液的吸光度,繪出吸光度對濃度的校準曲線。

日落黃的標準溶液的吸光度對 濃度的校準曲線

≥ 54.4 比色法的應用 (頁126)

假設把 5.00 cm³ 的汽水樣本稀釋至 10.00 cm³。已稀釋樣本的吸光度是 5.0。從上圖的校準曲線,可知已稀釋樣本中日落黃的濃度是 34 ppm。

該汽水樣本是由 5.00 cm³ 稀釋至 10.00 cm³。

- : 該汽水樣本中日落黃的濃度
 - $= 34 \text{ ppm x} \frac{10.00 \text{ cm}^3}{5.00 \text{ cm}^3}$
 - = 68 ppm
 - $= 68 \times 10^{-3} \text{ g dm}^{-3}$
 - $= \frac{68 \times 10 3 \text{ g dm}^{-3}}{452.4 \text{ g mol}^{-1}}$
 - $= 1.5 \times 10^{-4} \text{ mol dm}^{-3}$


小測試 54.1

- 1 連接電腦的儀器分析法可用於辨認化學品。描述利用儀器分析法的兩項優點。
- 2 先製備不同的標準 Ni²⁺(aq) 溶液,再利用已安裝合適的 LED 光源的比色計來量度這些標準溶液的吸光度。以下的校準曲線 展示吸光度隨 Ni²⁺(aq) 離子的濃度的變化。

1以下任何兩項:

- 快捷
- 能檢測少量的樣本/靈敏
- 準確
- 易於自動化
- 樣本不會被耗用
- 可靠 / 有效率
- 可自動運作/連續分析

小測試 54.1 (續)

a) 這實驗應使用下列哪個 LED 光源?解釋你的選擇。

LED 編號	1	2	3	4	5	6
光的顏色	紅	橙	黃	緑	青	藍

- b) 參考該校準曲線,指出吸光度與 [Ni²⁺(aq)] 之間的關係。
- c) 把 20.0 cm³ 的 Ni²+(aq) 溶液 X 稀釋至 100.0 cm³。比色計量得該經稀釋溶液的吸光度是 3.0。

計算 X 中 Ni²⁺(aq) 的濃度。

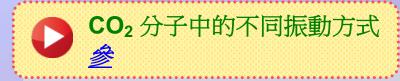
a) LED 編號 1

綠色 Ni²⁺(aq) 溶液吸收紅光的程度大。

- b) 吸光度與Ni²⁺(aq) 的濃度成正比。
- c) 吸光度 = 3.0, 從該坐標圖可見[Ni²⁺(aq)] = 0.00019 mol dm⁻³ 溶液 X 被稀釋 5 倍。

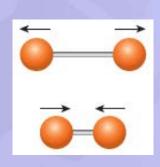
在X中Ni²⁺(aq)的濃度 = 5 x 0.00019 mol dm

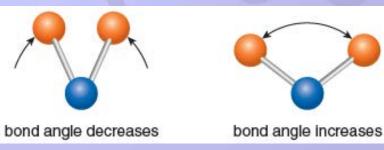
 $= 9.5 \times 10^{-4} \text{ mol dm}^{-3}$



54.5 紅外光譜法 (頁129)

- 光譜法是指採用電磁輻射獲取與物質的結構或性質有關的數 據的各種不同技術。
- 可用的一系列技術涵蓋電磁輻射光譜的許多部分 包括紅外 輻射、可見光和紫外線等區域。
- ◆ 紅外光譜法是一項用於辨認有機分子中官能基的分析技術。



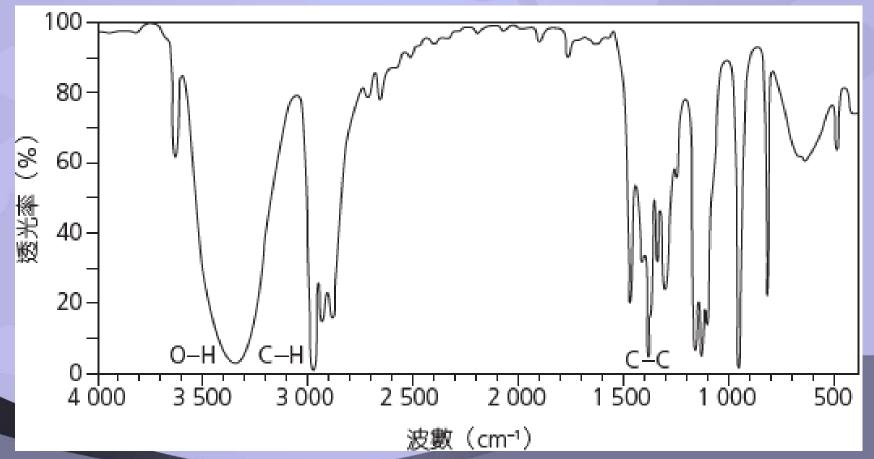

54.5 紅外光譜法 (頁129)

紅外光譜法如何運作

- ◆ 分子中的原子是以共價鍵連結的。這些鍵具有能量,能自然地 震動。
- ◆ 第一類別的振動為伸展。伸展式振動是沿着原子之間的直線有 節奏的移動,因此兩個原子中心的距離會增加或減少。
- ◆ 第二類別的振動為彎曲。彎曲式振動是因鍵的角度改變引致。

分子中的鍵可作伸展式 振動,原子中心的距離會 改變

分子中的鍵可作彎曲式振動,鍵的角度改變


≥ 54.5 紅外光譜法 (頁129)

- ◆ 較強的鍵振動得較快(頻率較高),而較重的原子令鍵振動得較慢(頻率較低)。
- ◆ 這些頻率全都位於電磁輻射光譜的紅外輻射區域。
- ◆ 任何的鍵只能吸收頻率與其自然振動頻率相同的輻射。
- ◆ 紅外光譜儀以紅外輻射穿過樣本,並量度涉及化合物中每種鍵 的吸光度,形成紅外光譜,以作分析。

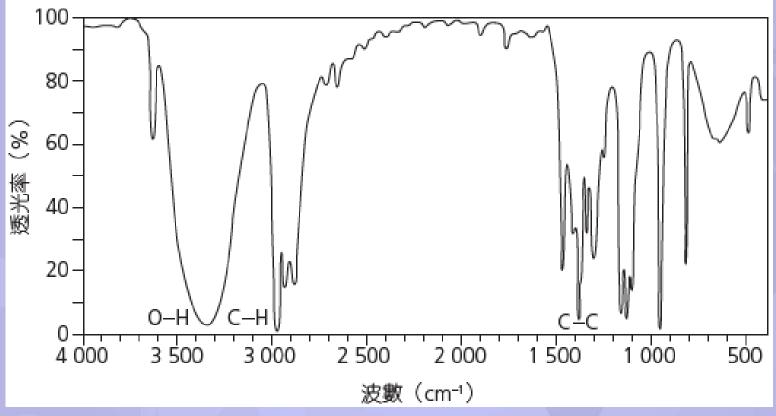
◆ 下圖展示丙-2-醇的紅外光譜。該光譜是一個透光率 (transmittance) 對波數 (wavenumber) 的圖表。

軸

- 縱軸被標示為透光率,以0至100的百分率來表示。透光率 為 100% 表示透射的輻射為 100%, 並沒有輻射被吸收。
- 横軸被標示為波數。由於頻率的數值很大,所以科學家利用較 方便的刻度一波數。
- 波數是指每厘米內波的數目,單位是 cm⁻¹。波數(符號:ṽ) 和波長(符號: 1)的關係如以下方程式所示:

$$\tilde{v}$$
 (cm⁻¹) = $\frac{1}{\lambda$ (in cm)

輻射的波數與頻率成正比



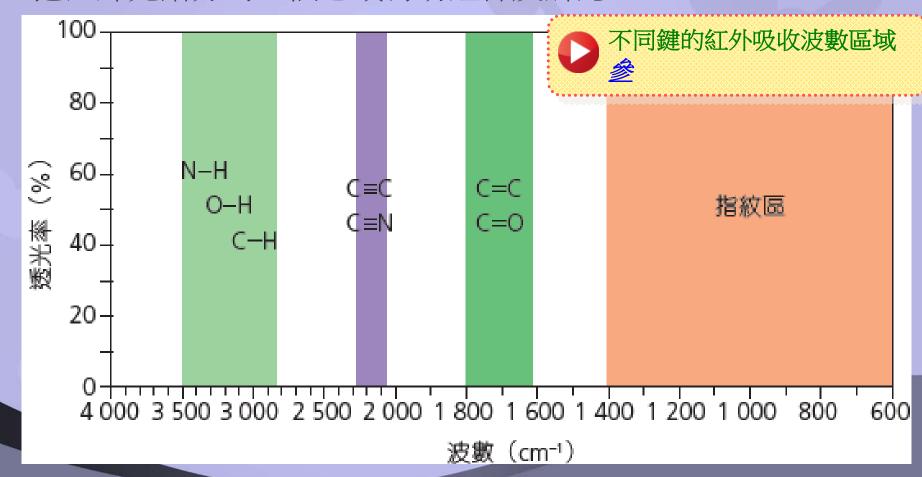
吸收峰

- ◆ 紅外光譜的大部分由接近100%的水平線組成,但在特定的波 數位置有凹陷之處。這些凹陷之處就是吸收峰。
- 吸收的實際透光率並不重要,最重要的是強度。
- 強度低是指透光率高,而強度高是指透光率低。

- 在 3 330 cm-1 附近的寬闊吸收峰對應 O-H 的伸展式振動;
- 在 2 970 cm-1 處的吸收峰對應 C-H 的伸展式振動;
- 在 1 380 cm-1 處的吸收峰對應 C-C 的伸展式振動。

- ◆ 科學家發現 4 000-1 500 cm⁻¹ 區域內的吸收峰對應特定的鍵的伸展式振動。
- ◆ 使紅外光譜能提供有機分子含有甚麼官能基的寶貴線索。
- ◆ 由於吸收峰的確實位置視乎分子中的鍵的周邊環境,所以只提供預期會發生吸收的波數區域。

◆ 一些共價鍵(伸展式振動)的特徵紅外吸收波數區域。


鍵合	化合物的類別	波數區域(cm⁻¹)	強度
C=C	烯	1 610–1 680	ф
C=O	醛、酮、羧酸和其衍生物	1 680–1 800	強
C≡C	炔	2 070–2 250	中至弱
C≡N	腈	2 200–2 280	ф
O-H	帶氫鍵的酸	2 500–3 300	強,非常闊
C-H	烷、烯、芳烴	2 840–3 095	ф
O-H	帶氫鍵的醇、酚	3 230–3 670	強,闊
N-H	胺	3 350–3 500	中,闊

◆ 把紅外光譜分為四個區域有助詮釋及辨認。

- ◆ 即使光譜中某些特徵波數區域沒有吸收峰,也能提供重要的 資料。
- ◆ 可根據這些資料,推斷受測試化合物的分子不含某些鍵(或官能基)。

鑑定碳化合物

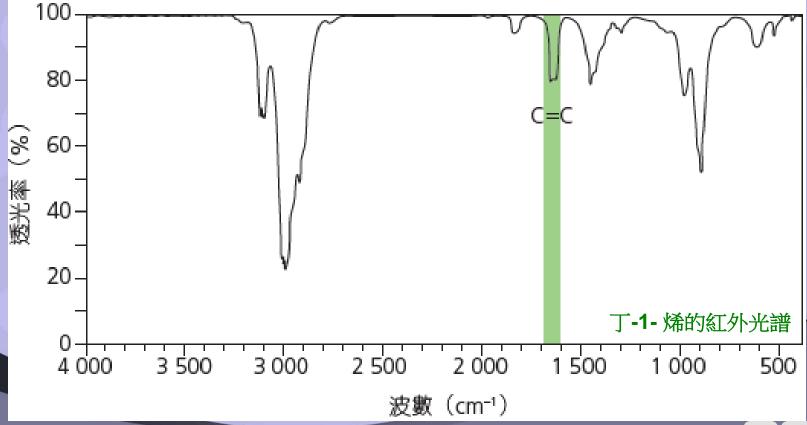
◆ 紅外光譜中在約1 500 cm⁻¹ 以下區域通常包含很多由整個分子的複雜振動造成的吸收峰。

- ◆ 這形狀是涉及物質獨有的,它可用於鑑定該化合物,如同利用指紋來辨認人的身分一樣。因此,這稱為**指紋區** (fingerprint region)。
- ◆ 化學家可用電腦把某樣本的指紋區與數據庫中化合物的作配 對,如果兩者完全一致,便可鑑定該樣本。

純度測試

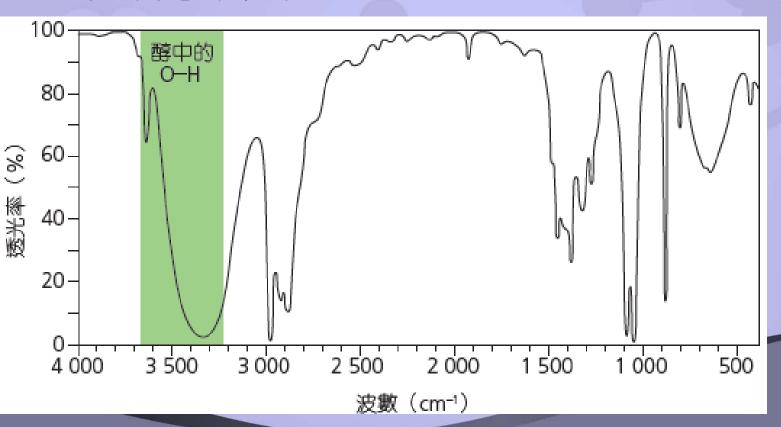
- ◆ 純化合物的紅外光譜應與數據庫中的一致。任何零散的吸收峰均來自雜質。
- ◆ 例如,如果醇的光譜在1 700 cm⁻¹ 附近有吸收峰,很可能是由羰基或羧酸(和其衍生物)雜質所造成。

紅外光譜有兩大用途:


- •鑑定存在於碳化合物分子中的官能基;
- ·鑑定碳化合物(因為每個化合物擁有獨特的紅外光譜)。

烯的紅外光譜

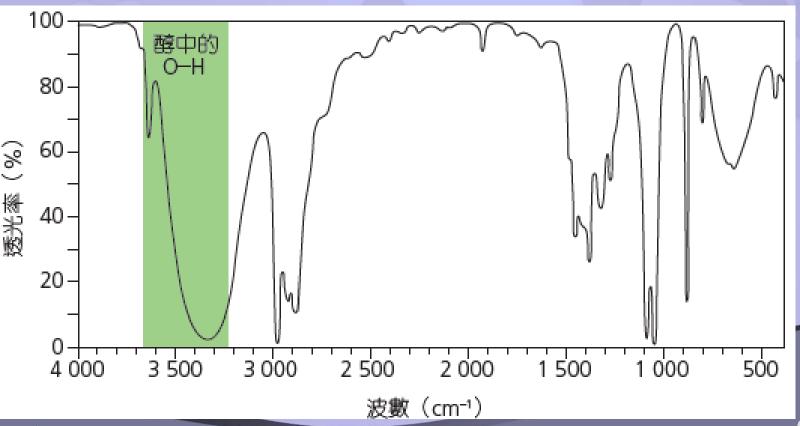
◆ 烯的紅外光譜在1 610–1 680 cm⁻¹ 的範圍內有吸收峰,對應 C=C 鍵。



醇的紅外光譜

◆ 醇的紅外光譜在 3 230-3 670 cm⁻¹ 的範圍內有寬闊的吸收峰,對應醇中的 O-H 鍵。

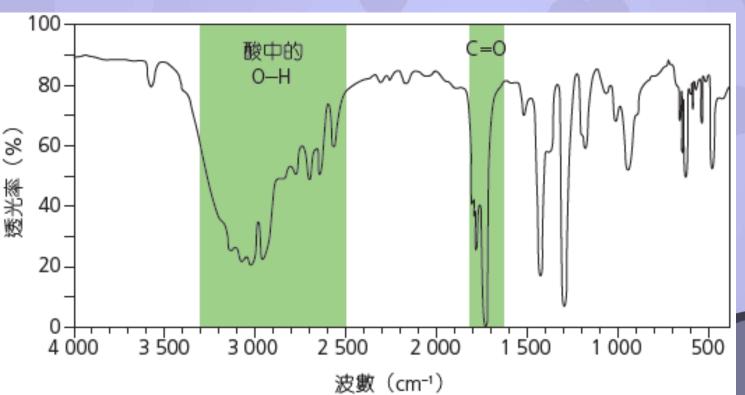
乙醇的紅外光譜



醛或酮的紅外光譜

◆ 醇的紅外光譜在3 230-3 670 cm-1 的範圍內有寬闊的吸收峰,對應醇中的O-H 鍵。

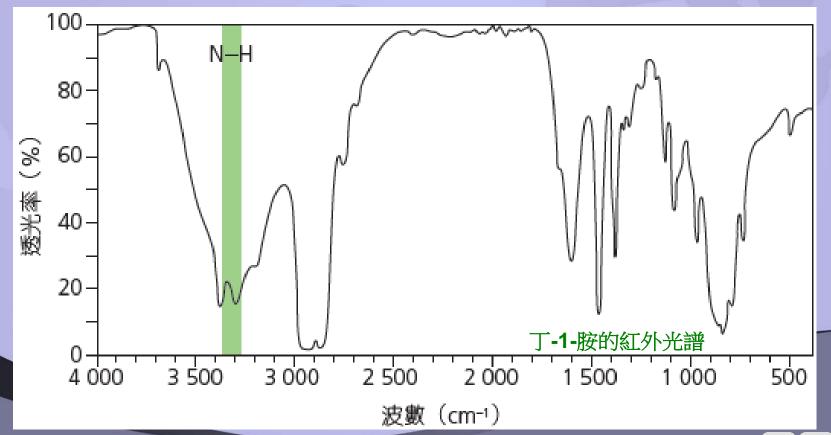
乙醛的紅外光譜


◆ 醛或酮的光譜有對應 C=O 鍵的吸收峰,但沒有對應 O-H 鍵的吸收峰。

羧酸的紅外光譜

- ◆ 羧酸的紅外光譜具有以下的吸收峰:
 - 在 1 680-1 800 cm-1 的區域內對應 C=O 鍵的吸收峰;
 - 在 2 500-3 300 cm-1 的區域內對應 O-H 鍵的寬闊吸收峰。

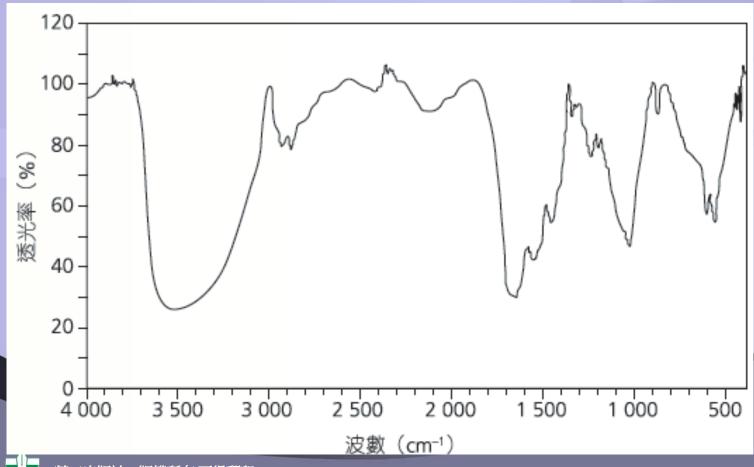
乙酸的紅外光譜



54.8 詮釋紅外光譜 (頁135)

胺的紅外光譜

◆ 胺的紅外光譜在 3 350-3 500 cm⁻¹ 的範圍內有吸收峰,對應 N-H 鍵。


- ◆ 紅外光譜法常用於鑑證科學,例如分析肇事逃逸案件中車輛的 油漆碎片。其他倚賴該技術的用途包括:
 - 監測聚合物的不飽和程度;
 - 香水生產的品質控制;
 - 檢測懷疑醉駕的駕駛者所呼出的氣體是否含乙醇;
 - 循例檢查藥品的成分,以確保產品安全和有效。

問 (例題 54.1)

甲殼素的紅外光譜顯示如下:

問 (例題 54.1) (續)

參考下表的資料,指出哪個結構 (X 和 Y) 可能是甲殼素的結構,並加以解釋。

特徵紅外吸收波數區域(伸展式)

鍵合	化合物的類別	波數區域 (cm ⁻¹)
C=C	烯	1 610–1 680
C=0	醛、酮、羧酸和其衍生物	1 680–1 800
C=C	炔	2 070–2 250
C=N	腈	2 200–2 280
0-н	帶氫鍵的酸	2 500–3 300
0-н	帶氫鍵的醇、酚	3 230–3 670

問 (例題 54.1) (續)

答

Y是甲殼素的結構。

紅外光譜在 $1680 - 1800 \text{ cm}^{-1}$ 的範圍內有吸收峰,即顯示有 C=O 基團存在,排除了結構 X 的可能性。

問 (例題 54.2)

下列兩種化合物是同分異構體。

參考下表的資料,提出是否可利用紅外光譜來辨別該兩種化合物。

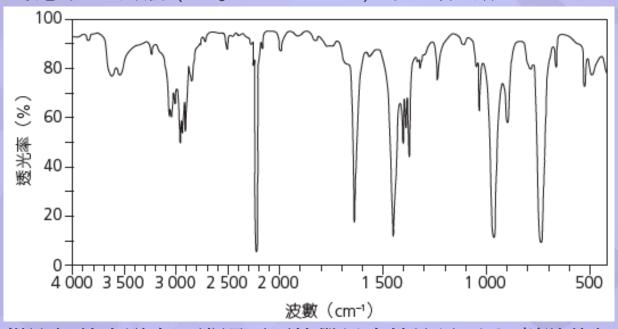
特徵紅外吸收波數區域(伸展式)

鍵合	化合物的類別	波數區域 (cm ⁻¹)
C = C	烯	1 610–1 680
C=O	醛、酮、羧酸和其衍生物	1 680–1 800
C = C	炔	2 070–2 250
C≡N	腈	2 200–2 280
0-Н	帶氫鍵的酸	2 500–3 300
C - H	烷、烯、芳烴	2 840–3 095
0-Н	帶氫鍵的醇、酚	3 230–3 670
N─H	胺	3 350–3 500

問 (例題 54.2) (續)

答

兩種化合物的紅外光譜在 1 680 – 1 800 cm⁻¹ 的範圍內均有強吸收峰,這是有 C=O 鍵或羰基存在的特徵。


由於該兩種化合物並沒有其他不同的官能基,因此不能利用所給資料來辨別它們。

小測試 54.2

1 考慮丁-2-烯腈 (CH₃CH=CHC≡N) 的紅外光譜。

在約 2 200 cm⁻¹ 處有 強吸收峰,顯示有 C≡N 鍵存在。 在約 1 610–1 680 cm⁻¹ 的範圍內有強吸收峰, 顯示有 C=C 鍵存在。

從該紅外光譜中,辨認兩項特徵以支持這是丁-2-烯腈的紅外光譜。(參考表 54.1 提供的資料。)

小測試 54.2 (續)

2 聚酐(PAPA)用於製成抗癌藥的保護塗層。 PAPA聚合物鏈的部分結構顯示如下:

$$\begin{bmatrix} O & O & O & O & O & O & O \\ \parallel & \parallel & \parallel & \parallel & \parallel & \parallel & \parallel \\ & C & (CH_2)_7 & C & O & C & (CH_2)_7 & C & O & C \\ \end{bmatrix}$$

PAPA 塗層是可降解的,並可分解成二羧酸(HOOC(CH₂)₇COOH)。

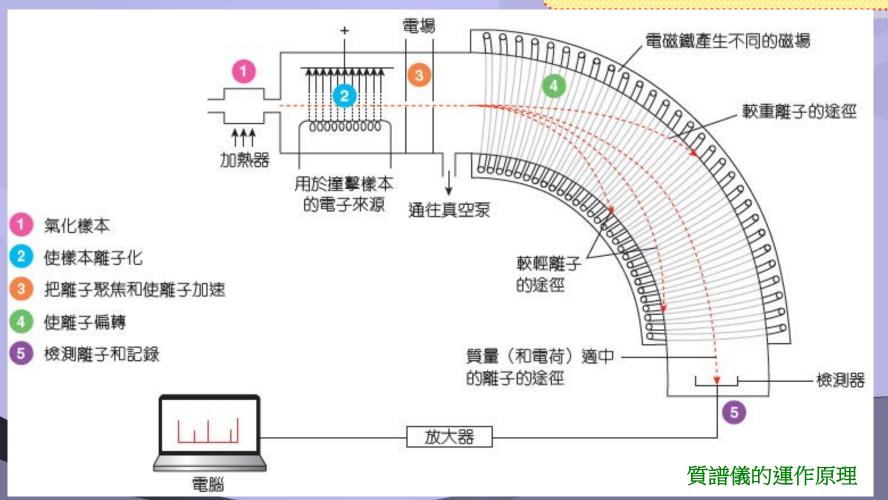
- a) 寫出 PAPA 分解時發生的反應的類別的名稱。水解
- b) 含 PAPA 塗層的藥片可在泡罩包裝內儲存一段長時間。科學家可利用紅外光譜法來檢測 PAPA 是否已分解。 概述紅外光譜法如何可以判斷 PAPA 是否已分解。 (參考表 54.1 提供的資料。)

觀察在 2 500-3 300 cm-1 的範圍內是否有對應O-H鍵(酸) 的寬闊吸收峰,因為 PAPA 的降解會產生二羧酸。

≥ 54.10 質譜法 (頁143)

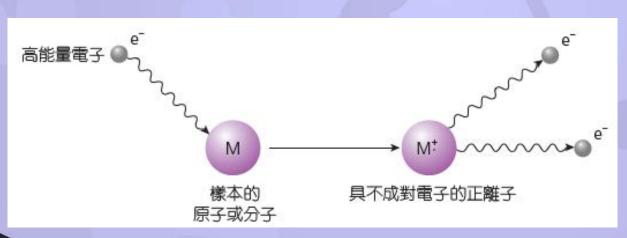
- 質譜法是一個強大的分析技術,它能提供元素的相對原子質 量,以及碳化合物的相對分子質量和結構等資料。
- ◆ 質譜法中使用的儀器稱為**質譜儀 (mass spectrometer)**。

質譜儀



≥ 54.10 質譜法 (頁143)

質譜儀如何運作



- 1 <u>氣化樣本</u> 把待分析樣本注入密室內,並加熱至轉化成氣體。該待 分析樣本可以是元素或化合物。
- 2 <u>使樣本離子化</u> 高能量的電子射向氣化樣本。它們擊走樣本的電子,生 成具有不成對電子的正離子。

被高能量電子撞擊後, 樣本的原子或分子生成 正離子

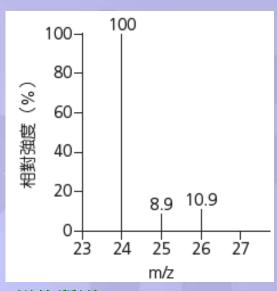
54.10 質譜法 (頁143)

- 3 把離子聚焦和使離子加速 帶電荷的板可使正離子聚焦成束,並將其導向儀器的其他部分。
- 4 使離子偏轉

電磁鐵令快速移動的離子偏轉。偏轉程度視乎離子的質量電荷 比。若所有離子帶 +1電荷(通常出現的情況),偏轉程度只視 乎它們的質量。較輕的離子比較重的離子偏轉得較多。

54.10 質譜法 (頁143)

- 5 檢測離子和記錄 偏轉的離子穿過一條窄縫,並由連接放大器的檢測器收集。 在某個磁場的強度下,只有某一質量的離子能穿越該縫並撞 擊檢測器。該離子撞擊檢測器時,所產生的電流會流向放大 器。離子愈多,電流便愈大。
- 通過改變磁場的強度,可讓不同質量電荷比的離子順利穿過 該縫,產生訊號,從而得出質譜。該質譜顯示由不同質量電 荷比的離子產生的訊號的強度。


- 質譜含一系列的峰,其中的縱軸是相對強度(%),而橫軸是 質量電荷比(m/z)。
- 豐度最高的離子產生的訊號最強,在該質譜中定為100%。所 有其他峰的強度均以這數值的百分率表示。
- 由於離子的電荷通常是+1,因此橫軸是該物種的相對質量。

元素的質譜

◆ 右圖展示在自然界中的鎂的質譜。峰上方的數字是每個被檢測的離子的相對豐度。

鎂的質譜

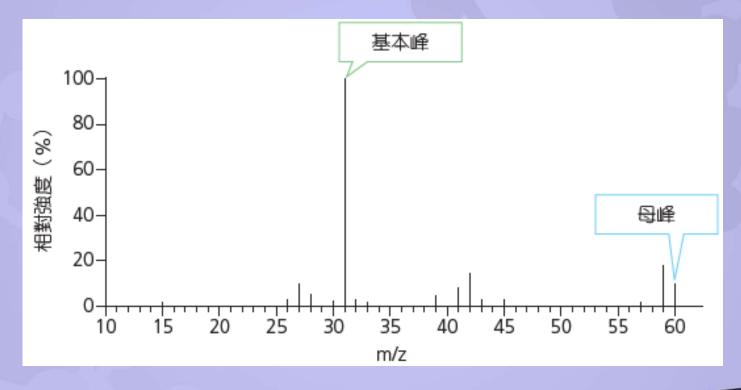
- 鎂有三種同位素,因為其質譜上有三個對應每種同位素的峰。
- 這些同位素的相對同位素質量是 24、25 和 26,是那些同位素的 m/z 值。
- 豐度最高的鎂的同位素的相對同位素質量是 24, 這是最高的峰的 m/z 值。

鎂的相對原子質量

$$= \frac{(24 \times 100) + (25 \times 8.9) + (26 \times 10.9)}{100 + 8.9 + 10.9}$$

= 24.3

碳化合物的質譜


◆ 觀察碳化合物的質譜時,首先要找出最右邊的峰,這峰的 m/z 值最大。這峰是母峰 (parent peak),由分子在質譜儀中失去 一個電子形成的母離子所產生。以丙-1-醇為例,這過程的方程式顯示如下:

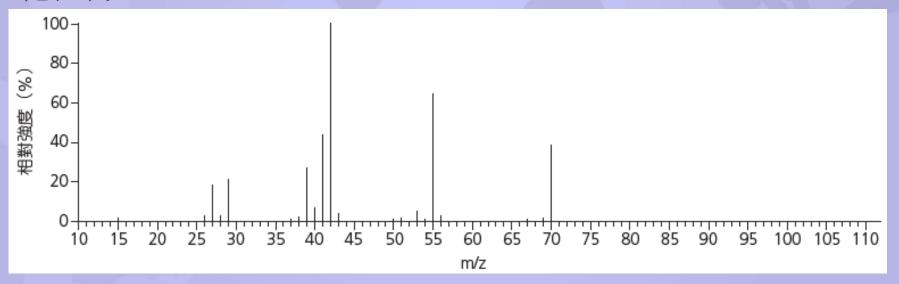
$$CH_3CH_2CH_2OH(g) + e^- \longrightarrow [CH_3CH_2CH_2OH]^{\ddagger}(g) + 2e^-$$
 母離子
$$m/z = 60$$

◆ 母峰的 m/z 值是 60, 這顯示丙-1-醇的相對分子質量是 60。

丙-1-醇的質譜

碎裂

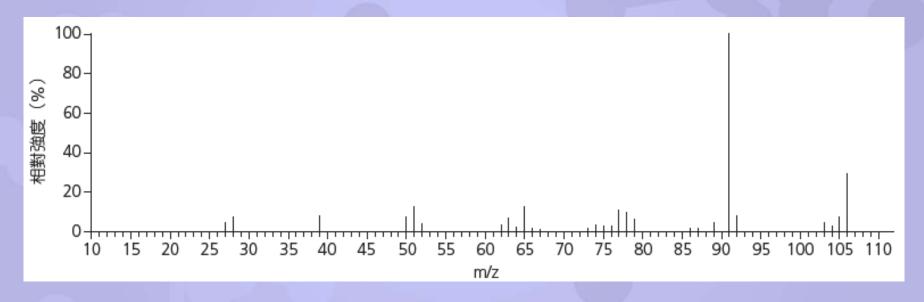
- ◆ 基本峰 (base peak) ,通常不是母峰。這峰對應最穩定強度 最高的峰稱為的化學物種。
- ◆ 在質譜儀中,一些分子離子分裂成小塊,該過程稱為碎裂 (fragmentation) •
- ◆ 質譜中的其他峰是從母離子分裂生成的碎塊離子 (fragment ions) 所產生的。


- ◆ 最簡單的碎裂是把母離子分裂成兩個化學物種 帶正電荷 的碎塊離子和自由基。
- ◆ 任何生成的正離子均會被質譜儀檢測到,但不帶電荷的自由基 則不會。
- 在丙-1-醇的質譜中,基本峰的 m/z 值是 31。以下方程式展示 這碎塊離子的可能結構及它如何從母離子生成。

小測試 54.3

從以下質譜辨認母峰,從而推定化合物A和B的相對分子質量。 化合物A

化合物 A 的相對分子質量 = 70

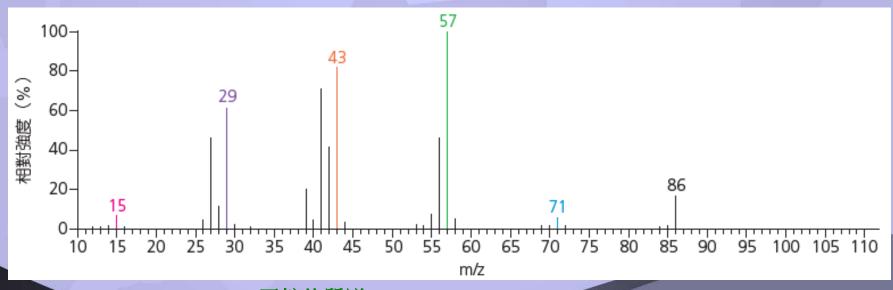


小測試 54.3 (續)

化合物 B

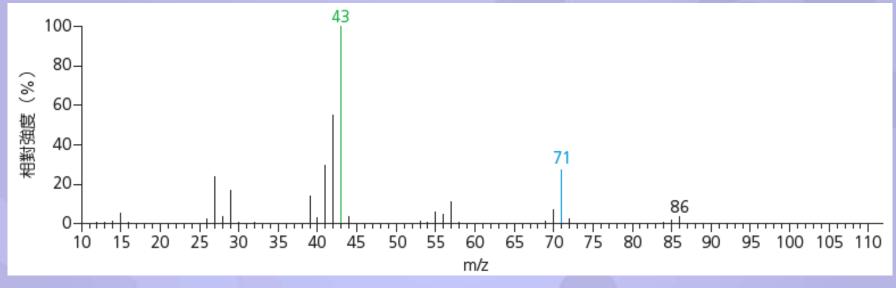
化合物 B 的相對分子質量 = 106

◆ 每種化合物的質譜是獨一無二的,分子會按其結構以不同的方 式碎裂。因此,質譜可用於辨認化合物。

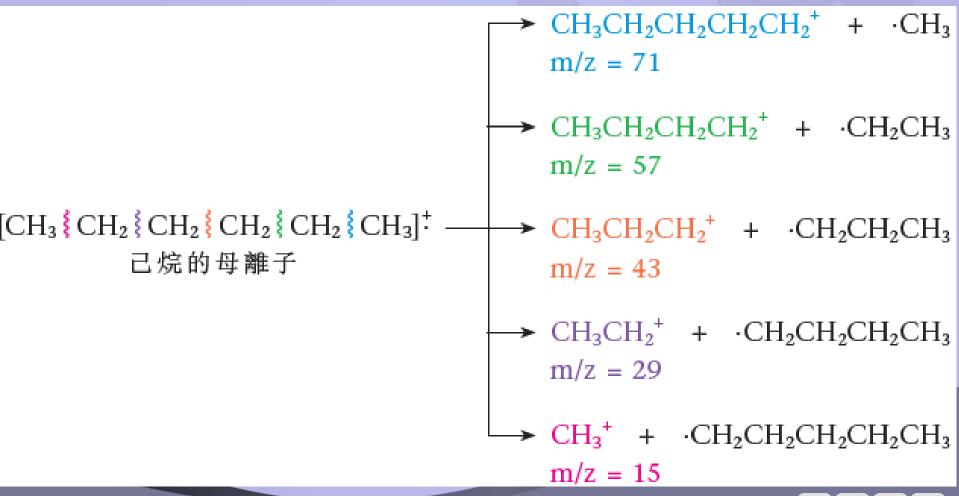

即使兩種化合物有相同的分子質量和母峰,亦可從它們的質譜 找到對應不同碎塊離子的峰。

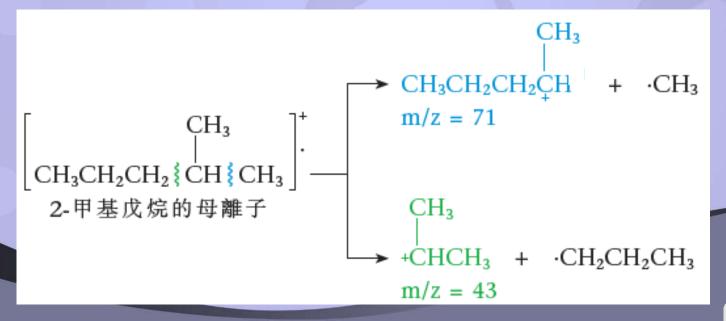
己烷和 2-甲基戊烷的碎裂模式

◆ 己烷和 2-甲基戊烷(C_6H_{14} 的兩個同分異構體)的質譜的質譜中的母峰均在 m/z = 86 處,但 **碎裂模式 (fragmentation patterns)** 卻有所不同。

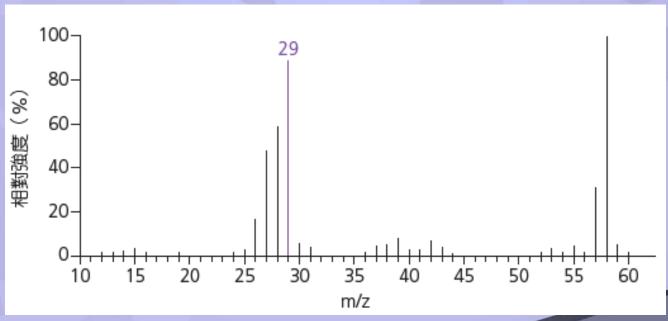


己烷的質譜


2-甲基戊烷的質譜

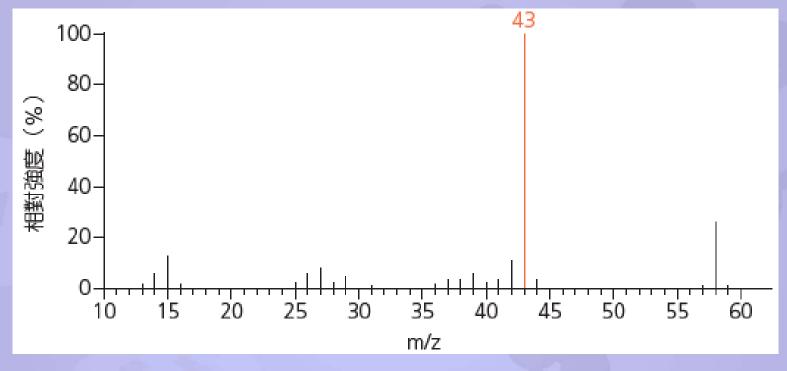

◆ 己烷的母離子可通過其任何碳-碳鍵的碎裂而生成較小的碎塊:

- ◆ 含支鏈的烷增加在分支點碎裂的可能性,因為有較穩定的碳陽 離子生成。
- ◆ 觀察 2-甲基戊烷的質譜,在 m/z = 71 處的峰較在己烷的質譜中的強,以及其基本峰在 m/z = 43 處。 這些峰對應從以下碎裂所生成的二級碳陽離子:

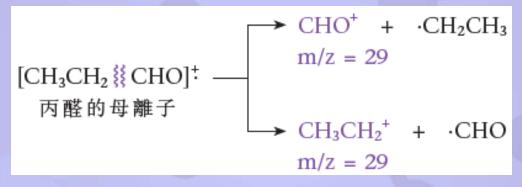


丙醛和丙酮的碎裂模式

◆ 丙醛和丙酮(C_3H_6O 的兩個同分異構體)的質譜。兩者的質譜中的母峰均在 m/z = 58 處,但碎裂模式卻有所不同。



丙醛的質譜


丙酮的質譜

◆ 其中一個明顯的分別是丙醛的質譜在 m/z = 29 處呈現強峰, 這峰沒有在丙酮的質譜出現。這強峰可由 CHO+ 離子或 CH₃CH₂+ 離子或由這兩者造成:

◆ 另一個明顯的分別是丙酮的質譜在 m/z = 43 處呈現強峰,這峰 沒有在丙醛的質譜出現。

- ◆ 酮的母離子的碎裂通常發生於羰基旁的碳- 碳鍵,因而形成 RCO+ 離子。
- ◆ 在 m/z = 43 處的峰對應從以下碎裂所生成的 CH₃CO+ 離子。

$$[CH_3CO \ CH_3]^{\dagger}$$
 ——— $CH_3CO^{\dagger} + \cdot CH_3$
 丙酮的母離子 $m/z = 43$

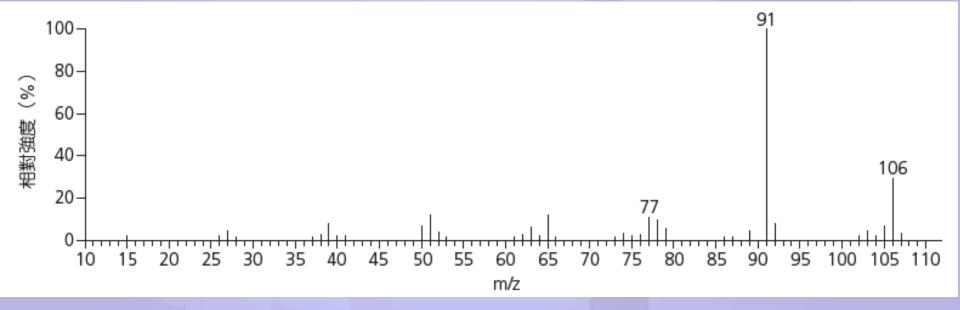
小測試 54.4			m/:	z	對應的化學物種		
1乙酸的質譜顯示如下:			60		[CH₃COOH] [†]		
			45		соон⁺		
		1007		43		CH₃CO ⁺	
相對治底(%)	<u> </u>	80-					
	相對強度 (%	60-					
		40-					
	#	20-					
		0	<u> </u>	 	 		
		1		45 50) 55	60 65 70 75 80	
				m/z			

在乙酸的質譜中,母峰在m/z = 60 處,在 m/z = 43 和 45 處出現明顯的峰。 為每個訊號,分別提出一個對應的化學物種。

► 對原子質量:H = 1.0, C = 12.0, O = 16.0

小測試 54.4 (續)

2以下是一種化合物的質譜。該化合物可能是丁醛或丁酮。


- a) 為在 m/z = 43 和 57 的訊號,分別提出一個對應的化學物種。
- b) 提出該化合物是丁醛抑或丁酮。該化合物是丁酮。 相對原子質量:H=1.0,C=12.0,O=16.0)

芳香族化合物的碎裂模式

乙基苯的質譜

◆ 乙基苯的母離子進行碎裂時生成的 C₆H₅CH₂+離子會重新排列成相對穩定的碳陽離子 C₇H₇+。這離子導致在 m/z = 91 處出現的特徵峰。

- 在 m/z = 77 處的峰對應 C_6H_5 * 離子,這離子是因母離子失去 CH_2CH_3 自由基而生成。
- ◆ 在芳香族化合物的質譜中,在 m/z = 77 和 91 處經常出現明顯 ・ 的峰。

在質譜儀中所生成的典型碎塊離子

◆ 在質譜儀中所生成的典型碎塊離子及其對應的 m/z 值。

離子	質量電荷比(m/z)		
CH₃ ⁺	15		
C₂H₅⁺	29		
CH₃CO⁺	43		
C₃H ₇ ⁺	43		
C₄H₅⁺	57		
CH₃CH₂CO⁺	57		
C ₆ H₅ ⁺	77		
C ₆ H₅CH₂ ⁺	91		

問 (例題 54.3)

X和Y是同分異構化合物,它們的結構顯示如下:

$$CH_3$$
 CH_2 CH_2

解釋如何從 X 和 Y 個別的質譜把它們辨別。 (相對原子質量: H = 1.0, C = 12.0, O = 16.0)

問 (例題 54.3) (續)

答

以下任何兩項:

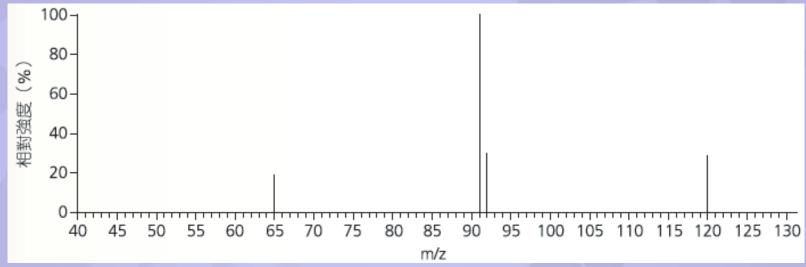
- •在 X 的質譜中,在 m/z = 43 處出現由 CH₃CO+ 離子產生的明顯的峰,但此峰 沒有在Y的質譜中出現。
- •在Y的質譜中,在m/z = 119處出現由 $C_6H_5CH_2CO^{\dagger}$ 離子產生的明顯的峰, 但此峰沒有在X的質譜中出現。
- •在X的質譜中,在m/z = 93處出現由 $C_6H_5O^+$ 離子產生的明顯的峰,但此峰 沒有在Y的質譜中出現。
- •在 Y 的質譜中,在 m/z = 91 處出現由 $C_6H_5CH_2$ 雜子產生的明顯的峰,但此 峰沒有在X的質譜中出現。
- •在Y的質譜中,在m/z = 45 處出現由 COOH 離子產生的明顯的峰,但此峰 沒有在X的質譜中出現。

問 (例題 54.4)

化合物 X 含 -C₆H₅ 基團。下列是對 X 進行兩項化學試驗所得的結

試驗 1: X 把酸化重鉻酸鉀水溶液變成綠色。

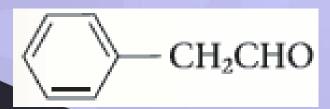
試驗 2: 用托倫斯試劑進行測試時, X 呈陽性結果。


- a) 只根據試驗 1 的結果,指出 X 可能含有的兩個官能基。
- b) i) 在試驗 2 中使用托倫斯試劑的目的是甚麼?
 - ii) 指出對 X 預期的觀察結果。
- c) 參考試驗 1 和試驗 2 的結果,指出 X 可能含有的一個官能基。

問 (例題 54.4) (續)

d) X 的質譜顯示如下:

- i) 辨認母峰從而推斷 X 的相對應的化學物種。
- ii) 為在 m/z = 91 的訊號,提出一個對應的化學物種。 繪出 X 的可能結構。



問 (例題 54.4) (續)

答

- a) 羥基醛基
- b) i) 測試該化合物是否含有醛基。 ii) 銀鏡在反應容器的內壁形成。
- c) 醛基
- d) i) 母峰的 m/z 值是 120。因此, X 的相對分子質量是 120。
 - ii) 在 m/z = 91 處的訊號顯示 $C_6H_5CH_2$ 雜子的存在。

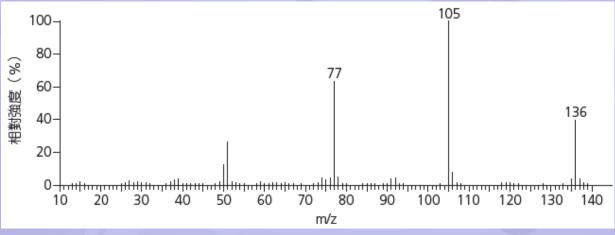
小測試 54.5

1 化合物 X 和 Y 是同分異構體。

解釋如何從 X 和 Y 個別的質譜把它們辨別。 (相對原子質量: H = 1.0, C = 12.0, O = 16.0)

只在 X 的質譜中,在 $m/z = 105 (C_6H_5CO^+)$ 或 $m/z = 43 (CH_3CO^+)$ 處出現明顯的峰。

只在Y的質譜中,在m/z = 91($C_6H_5CH2^+$)或m/z = 29(CHO^+)處出現明顯的峰。



小測試 54.5 (續)

- 2 化合物 X 的實驗式是 C₄H₄O。
 - X是帶水果香味的液體。
 - 用 2,4-二硝基苯肼進行測試時, X 呈陰性結果。
 - 與 Na₂CO₃(aq) 搖勻時, X 不會發生泡騰。
 - a) X 可能含有甚麼官能基?
 - b) X 的質譜顯示如下:

- i) 辨認母峰,從而推斷 X 的分子式。
- ii) 為在 m/z = 77 和105 的訊號,分別提出一個對應的化學物種
-)繪出 X 的可能結構。

小測試 54.5 (續)

- 2 a) 用 2,4-二硝基苯肼測試時, X 呈陰性結果, 這顯示 X 不是羰基化合物。 X 與 Na₂CO₃(aq) 搖勻時, 不會發生泡騰, 這顯示 X 不含 -COOH 基團。 X 帶水果香味,它可能是酯。 酯基團可能存在於 X 中。
 - b) i) X 的相對分子質量是 136。 設(C₄H₄O)_n 為 X 的分子式。 X 的相對分子質量 =136 = n(4 x 12.0 + 4 x 1.0 + 16.0) 136 = 68n n = 2
 - :: X 的分子式是 C₈H₈O₂。

小測試 54.5 (續)

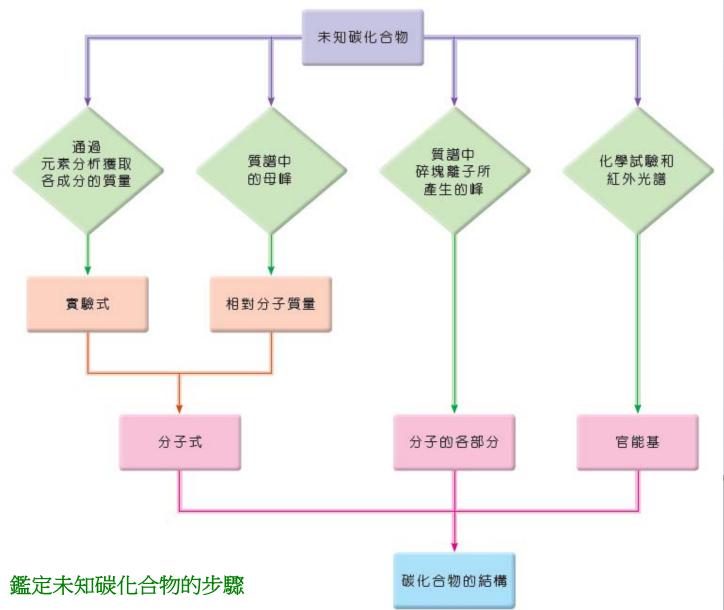
2 b) ii)

訊號	對應的化學物種	
m/z = 77	C ₆ H ₅ ⁺	
m/z = 105	C ₆ H ₅ CO ⁺	

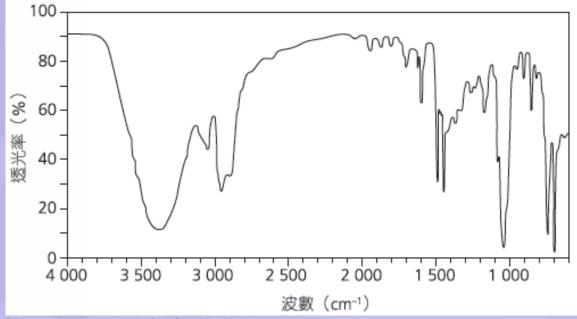
c)

54.13 質譜法的應用 (頁157)

- 測試運動員體內是否含有助提升表現的禁藥;
- 監察和追蹤空氣或供水中的污染物;
- 檢測食品中的毒素;
- 通過測試岩石樣本來找出石油的所在地;
- 測定周邊環境對人體基因的損害程度。



- 鑑定碳化合物和測定其結構時,很少只用單一的分析技術,通常 會用來自多項不同技術的數據來進行分析。
- 一系列典型的鑑定程序包括下列所有項目:
 - 元素分析 利用質量組成的數據來測定實驗式。
 - 質譜法 利用質譜中的母峰來測定相對分子質量,並利用碎 塊離子來辨認分子的各部分,再把獲取的質譜與 數據庫中的比較,以鑑定未知化合物。
 - 紅外光譜法 利用紅外光譜中的吸收峰鑑定分子含有的鍵和 官能基。
- 當得出化合物的實驗式和相對分子質量後,便可判斷未知化合 物的分子式。然後,利用紅外光譜所提供的證據,這或可辨認 出該未知化合物。



問 (例題 54.5)

在常温下,化合物 $T(C_xH_yO_z)$ 是無色的液體。

a) T 的紅外光譜顯示如下:

推斷 T 可能含有的官能基。 (參考表 54.1 提供的資料。)

問 (例題 54.5) (續)

碳 77.8% 氫 7.4% 氧 14.8%

計算T的實驗式。

(相對原子質量: H = 1.0, C = 12.0, O = 16.0)

- c) 在 T 的質譜中,母峰在 m/z = 108 處,在 m/z = 77 和 91 處出現明顯的峰。
 - i)推斷T的分子式。
 - ii) 為在 m/z = 77 和 91 的訊號,分別提出一個對應的化學物種。
- d) 繪出 T 的可能結構。

問 (例題 54.5) (續)

答

a) 該光譜中在約 3 230 – 3 670 cm⁻¹ 處有強而寬闊的吸收峰,對應 O–H 鍵的伸展式振動。

該光譜在約 1 680 – 1 800 cm⁻¹處沒有吸收峰,排除了C=O 鍵存在的可能性。

因此,該化合物可能含羥基。

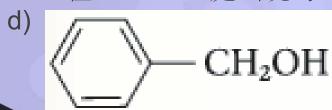
b) 100 g 的 T 含 77.8 g 的碳7.4 g 的氫和 14.8 g 的氧

	碳	氫	氧
元素的質量	77.8 g	7.4 g	14.8 g
相對原子質量	12.0	1.0	16.0
原子的摩爾數	77.8 g 12.0 g mol ⁻¹ = 6.48 mol	7.4 g 1.0 g mol ⁻¹ = 7.4 mol	14.8 g 16.0 g mol ⁻¹ = 0.925 mol
原子的摩爾比	$\frac{6.48 \text{ mol}}{0.925 \text{ mol}} = 7$	$\frac{7.4 \text{ mol}}{0.925 \text{ mol}} = 8$	0.925 mol = 1

::T的實驗式是C-H₈O。

問 (例題 54.5) (續)

答

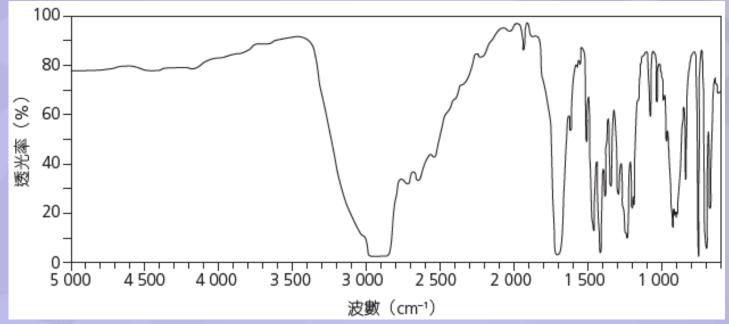

c) i) 設 (C₇H₈O)_n 為 T 的分子式。

T 的相對分子質量 = $n(7 \times 12.0 + 8 \times 1.0 + 16.0)$ = 108n

即是 108n = 108

$$n = 1$$

- :: T的分子式是 C7H8O。
- ii) 在 m/z = 77 處出現的峰對應 $C_6H_5^+$ 離子。 在 m/z = 91 處出現的峰對應 $C_6H_5^+$ 離子。



小測試 54.6

化合物 X 只含碳、氫和氧。

a) X 的紅外光譜顯示如下:

推斷 X 可能含有甚麼官能基。 (參考表 54.1 提供的資料。)

小測試 54.6 (續)

推斷X可能含有甚麼官能基。


(參考表 54.1 提供的資料。)

b) X 的質量組成顯示如下:

碳 70.6% 氫 5.9% 氧 23.5%

計算 X 的實驗式。(相對原子質量: H = 1.0, C = 12.0, O = 16.0)

c) X 的質譜顯示如下:

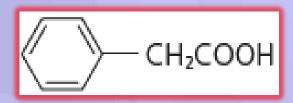
- i) 推斷 X 的分子式。
- ii) 為在 m/z = 45 和 91 的訊號,分別提出一個對應的化學物質
- 全 X 的可能結構。

小測試 54.6 (續)

- a) 在 2 500-3 300 cm⁻¹ 的範圍內有對應酸中的 O-H 鍵的寬闊強吸收峰。 在約 1 700 cm⁻¹ 處的強吸收峰對應 C=O 鍵。 因此,X可能含有 -COOH 基團。
- b) 100 g 的 X 含 70.6 g 的碳、5.9 g 的氫和 23.5 g 的氧。

	碳	<u></u>	氧
元素的質量	70.6 g	5.9 g	23.5 g
相對原子質量	12.0	1.0	16.0
原子的摩爾數	$\frac{70.6 \text{ g}}{12.0 \text{ g mol}^{-1}} = 5.88 \text{ mol}$	$\frac{5.9 \text{ g}}{1.0 \text{ g mol}^{-1}} = 5.9 \text{ mol}$	$\frac{23.5 \text{ g}}{16.0 \text{ g mol}^{-1}} = 1.47 \text{ mol}$
原子的摩爾比	5.88 mol 1.47 mol = 4	5.9 mol = 4	1.47 mol = 1

X的實驗式是 C_4H_4O 。


小測試 54.6 (續)

c) i) 設(C₄H₄O)_n 為 X 的分子式。
X 的相對分子質量 = n(4 x 12.0 + 4 x 1.0 + 16.0)
= 68n
68n = 136
n = 2

: X的分子式是 $C_8H_8O_2$ 。

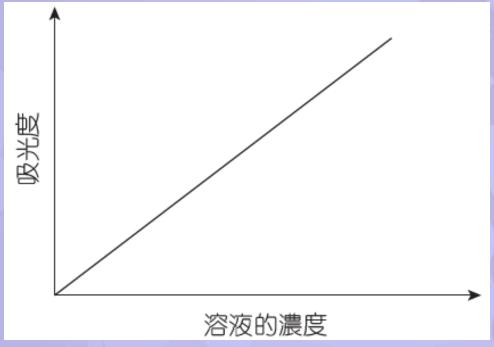
ii) 在 m/z = 45 處的峰對應 $COOH^+$ 離子。 在 m/z = 91 處的峰對應 $C_6H_5CH_2^+$ 離子。

d)

關鍵詞彙 (頁162)

比色法	colorimetry	波數	wavenumber
紅外光譜法	infrared spectroscopy	指紋區	fingerprint region
質譜法	mass spectrometry	質譜儀	mass spectrometer
互補色	complementary	母峰	parent peak
	colour		
強度	intensity	基本峰	base peak
比色計	colorimeter	碎裂	fragmentation
吸光度	absorbance	碎塊離子	fragment ion
校準曲線	calibration curve	碎裂模式	fragmentation pattern
透光率	transmittance		

摘要 (頁163)


- 1 與傳統的分析方法(例如容量分析)相比,儀器分析方法有很多優點,包括:
 - 快捷;
 - 準確度較高;
 - 靈敏度較高。
- 2 a) 比色法是根據溶劑中的化學物種吸收可見光譜某部分的輻射的能力,以測定該化學物種的濃度的技術。

摘要 (頁163)

2b)繪製一系列標準溶液的吸光度對其相應的濃度的坐標圖,可獲得一條校準曲線。

這坐標圖用於從未知溶液樣本的吸光度來測定其溶液的濃度。

摘要(頁163)

- 3 a) 紅外光譜法是以紅外輻射穿過樣本,並量度涉及化合物中 每種鍵的吸光度,形成紅外光譜。
 - b) 紅外光譜有兩大用途:
 - 鑑定存在於碳化合物分子中的官能基;
 - 鑑定碳化合物(因為每個化合物擁有獨特的紅外光譜)

摘要 (頁163)

- 4 a) 質譜法能提供元素的相對原子質量,以及碳化合物的相對 分子質量和結構等資料。
 - b) 質譜法是根據物質在真空中被高能量電子撞擊所生成的正 離子的質量電荷比,把物質分離和鑑定的方法。
 - c) 可以從分子離子的碎裂模式推斷分子的結構。下表展示一些在質譜儀中生成的典型碎塊離子及其對應的 m/z 值。

離子	質量電荷比(m/z)	離子	質量電荷比(m/z)
CH₃ ⁺	15	C₄H ₉ ⁺	57
C₂H₅ ⁺	29	CH₃CH₂CO⁺	57
CH₃CO⁺	43	C ₆ H ₅ ⁺	77
C ₃ H ₇ ⁺	43	C ₆ H ₅ CH ₂ ⁺	91

按節練習 (頁165)

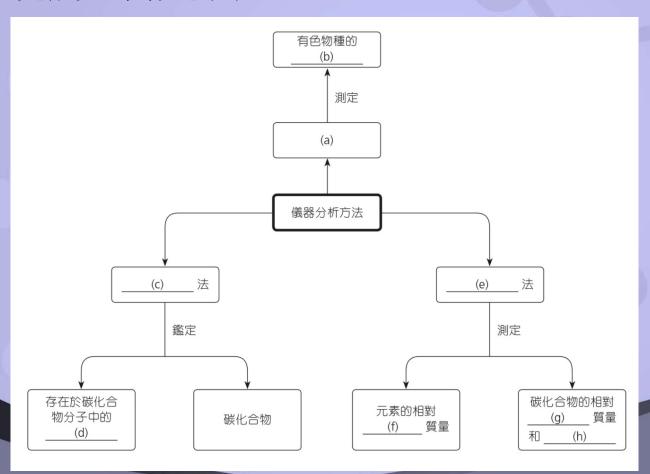
註: 題目按難度由淺至深(1至5級)分類:

→ 題目以3級或以上程度為目標;

題目以4級或以上程度為目標;

題目以5級程度為目標。

「*」顯示有效的傳意可取一分。

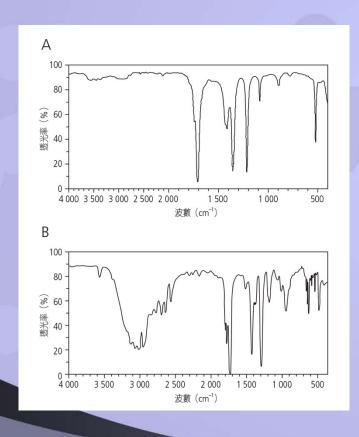

第 54 章 儀器分析方法

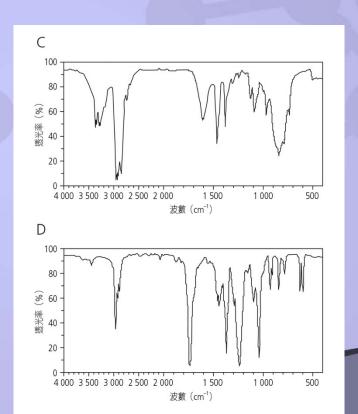
按節練習 (頁165)

第一部分 知識和理解

1完成以下概念圖。

- a) 比色法
- b) 濃度
- c) 紅外光譜
- d) 官能基
- e) 質譜
- f) 原子
- g) 分子
- h) 分子的各部分




按節練習 (頁165)

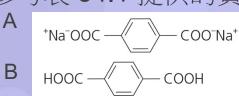
第二部分 多項選擇題

2 下列哪個是胺的紅外光譜? 在約 3 350-3 500 cm⁻¹ 處的吸收 (參考表 54.1 提供的資料。) 峰顯示 N-H 鍵 的存在。

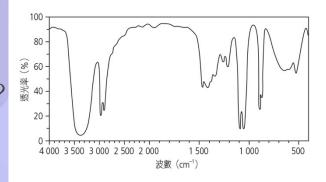
題解:

答案:C

101


按節練習 (頁165)

3 PET 是一種合成聚合物,它的重複單位顯示如下。


在實驗中,把PET與過量的NaOH(aq)回流加熱。利用紅外光譜法分析所生成的有機生成物。以下是其中一個取得的紅外光譜。

這個有機生成物的結構是甚麼? (參考表 54.1 提供的資料。)

C HOCH₂CH₂OH

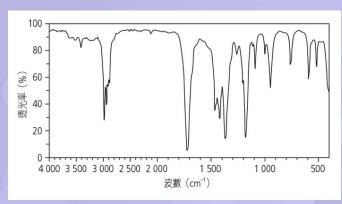
D +Na-OCH₂CH₂O-Na+

答案:C

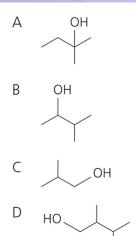
題解:

在約 3230-3670cm-1 處寬闊的強吸收

峰顯示 O-H 鍵(醇)的存在。



按節練習 (頁165)


4 醇 A 與硫酸和重鉻酸鉀進行回流加熱。

生成的有機化合物的紅外光譜顯示如下:

下列哪個化合物是醇 A?

題解:

氧化生成物的紅外光譜在約 1 680-1 800 cm⁻¹ 處有吸收峰,對應 C=O 鍵。該 光譜 在約 2500-3 300 cm⁻¹ 處沒有吸收峰,排除了酸中 O-H 鍵存在的可能性。這可推斷該氧化生成物是酮。醇 A 應該是二級醇。

答案:B

(OCR Advanced Subsidiary, Chem. A, H032/01, Jun. 2017, 19)

按節練習(頁165)

5 考慮以下的酯。

CH₃CH₂COOCH₂CH₃

下列哪個化學物種產生在這個酯的質譜中的母峰?

```
[CH<sub>3</sub>CH<sub>2</sub>COOCH<sub>2</sub>CH<sub>3</sub>]. [CH<sub>3</sub>CH<sub>2</sub>COOCH<sub>2</sub>CH<sub>3</sub>].
```

- [CH3CH2COOCH2CH3].
- CH₃CH₂COOCH₂CH₃

按節練習(頁165)

6 化合物 Z 的質譜在 m/z = 43 處出現一個峰。下列哪個不會是 Z ? (相對原子質量:H=1.0,C=12.0,O=16.0)

- CH₃COCH₂CH₃
- CH₃CH₂CH₂CHO
- CH₃CH₂CH₂COCH₃
- CH₃CH₂COCH₂CH₃

(Edexcel IAL, Advanced, Unit 5, Jun. 2014, 16)

題解:

CH₃COCH₂CH₃、CH₃CH₂CH₂CHO和 CH₃CH₂COCH₃的質譜在m/z = 43 處有峰。

以下分子的質譜	在 m/z = 43 處的峰對應的化學物種
CH₃COCH₂CH₃	CH₃CO⁺
CH₃CH₂CHO	CH₃CH₂CH₂ ⁺ 或 CH₂CHO ⁺
CH₃CH₂CH₂COCH₃	CH₃CH₂CH₂ ⁺ 或 CH₃CO ⁺

答案:D

按節練習 (頁165)

- 7 下列有關一碳化合物的質譜的陳述,何者正確?
 - (1) 它可用於測定該化合物的相對分子質量。
 - (2) x 軸的單位是「質量」。
 - (3) y 軸的單位是「透光率」。
 - A 只有 (1)
 - B 只有(2)
 - C 只有(1)和(2)
 - D 只有(2)和(3)

題解:

- (2) x-軸的單位是質量電荷比 (m/z)。
- (3) y-軸的單位是「相對強度」。

按節練習(頁165)

8 X和Y是同分異構體,它們的結構顯示如下:

下列哪個源自碎裂生成的單電荷離子的峰存在於X而不在Y的質譜中?

(相對原子質量: H = 1.0, C = 12.0, O = 16.0)

m/z = 43Α

B m/z = 45

m/z = 91

m/z = 136

題解:

在 X 的質譜中,在 m/z = 43 處的峰對應 CH_3CO^+ 離子。 這個峰不存在於Y的質譜。

按節練習 (頁165)

- 9 下列哪些分析技術是基於量度電磁輻射的吸收?
 - (1) 比色法
 - (2) 紅外光譜法
 - (3) 質譜法
 - A 只有(1)和(2)
 - B 只有(1)和(3)
 - C 只有(2)和(3)
 - D (1)、(2)和(3)

按節練習(頁165)

- 10 利用儀器方法比較丙醛 (CH₃CH₂CHO) 和丙酮 (CH₃COCH₃)。 下列哪些比較正確?
 - (1) 它們的紅外光譜中的指紋區有不同的模式。
 - (2) 它們的質譜中有不同的碎裂模式。
 - (3) 它們的質譜中的母峰有不同的 m/z 值。
 - A 只有(1)和(2)
 - B 只有(1)和(3)
 - C 只有(2)和(3)
 - D (1)、(2)和(3)

題解:

(3) CH₃CH₂CHO 和 CH₃COCH₃ 具相同的相對 分子質量。它們的質譜中的母峰具相同的 m/z 值。

第三部分 結構性問題

11化學分析可用來分辨錢幣的真偽。

a) 通過鑑定錢幣中的元素可以證明它是真的。

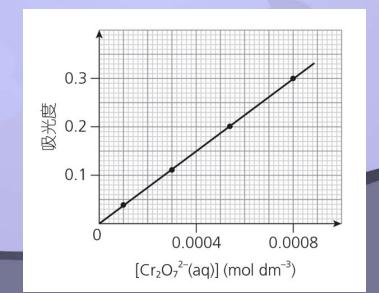
寫出可用於鑑定錢幣中的元素的一種儀器方法的名稱。

質譜法 (1)

b) 提出用儀器方法作分析的兩個原因。

以下任何兩項:

- 快捷 (1)
- 能檢測少量的樣本/靈敏 (1)
- 準確 (1)
- 可靠/有效率 (1)



12 利用容量分析測定一個 $Na_2Cr_2O_7(aq)$ 樣本 A 的濃度;並利用比色法測定另一個 $Na_2Cr_2O_7(aq)$ 樣本 B 的濃度。

- a) 把 25.00 cm³ 的樣本 A 轉移到一錐形瓶,並用稀 H₂SO₄(aq) 酸化。 然後在適當的指示劑下以 0.0642 mol dm⁻³ Fe²⁺(aq) 溶液滴定該混合物,需用 26.88 cm³ 的該 Fe²⁺(aq) 溶液來達到終點。
 - i) 寫出所涉及反應的平衡方程式。
 - ii) 計算在A中Na₂Cr₂O₇(aq)的濃度。
- b) 在比色法中, 先配製不同的標準 $Cr_2O_7^{2-}$ (aq) 溶液, 然後用裝了藍色 濾片的比色計來量度這些溶液的吸光度。以下的校準曲線顯示吸光 度隨 $Cr_2O_7^{2-}$ (aq) 離子濃度的變化。

- 12 (續)
- b) i) 提出為甚麼要用藍色濾片。
 - ii) 參考以上的校準曲線,寫出吸光度與 [Cr₂O₇2-(aq)] 的關係。
 - iii) 把樣本 B 稀釋 100 倍。用該比色計量度得這稀釋溶液的吸光度為 0.26。根據上述校準曲線所給的資料,計算在 B 中 Na₂Cr₂O₇(aq) 的濃度。
 - c) 解釋在測定一個非常稀 (如大概 10-4 mol dm-3) 的 Na₂Cr₂O₇(aq) 的濃度時,使用容量分析抑或比色法較為恰當。

香港公開考試試題答案從略 (如適用)。

(HKDSE, Paper 2, 2016, 3(b))

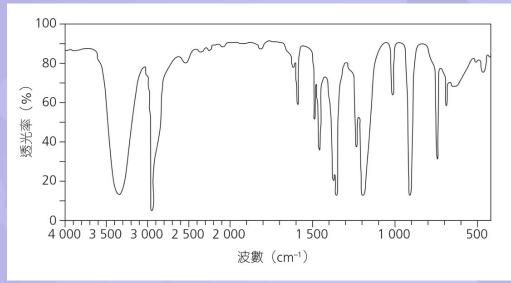
- 13 有四個分子式為 C₄H₁₀O 的同分異構醇。
 - a) 同分異構體 W 和 X 兩者均是直鏈醇。
 - W可被氧化成P。
 - X可被氧化成 Q。

P和 Q 都是具 C_4H_8O 分子式的同分異構體。以托倫斯試劑測試時,P 呈陰性結果,Q 則呈陽性結果。

利用以上有關化合物P和Q的資料,辨認醇W和X。

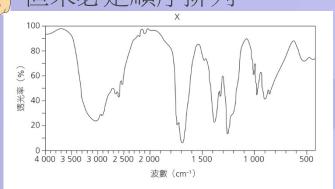
參考P和Q所含的官能基,解釋你的答案。

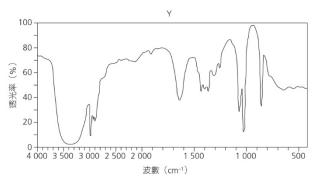
- **Q** 是**醛**, **P** 則是**酮**。 (1)
- W 是直鏈二級醇,即是丁-2-醇。它會氧化成酮。(1
- X 是直鏈一級醇,即是丁-1-醇。它會氧化成醛。(1)

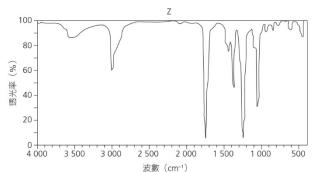


13 (續)

b) 以下所示為四個同分異構醇中的其中一個的紅外光譜。


- i) 提出一個特徵以支持這是醇的紅外光譜。 (參考表 54.1 提供的資料。)在 <u>3 230-3 670 cm-1</u> 的範圍內有吸收 峰,這支持 O-H 鍵(醇)的存在。 (1)
- ii)解釋紅外光譜法如何用於鑑定這個同分異構醇。 把光譜的<u>指紋區</u>與已知樣本的光譜/數據庫的光譜作配對。(1)





14 三種化合物 X、Y 和 Z 的紅外光譜顯示如下。那些化合物是酯、羧酸和醇,但未必是順序排列。

a) 辨認各光譜的主峰及其對應的鍵。 (參考表 54.1 提供的資料。)

光譜 X

在約 2 500-3 300 cm⁻¹ 處寬闊的強吸收峰對應 O-H

鍵(酸)。(1)

在約 1 680-1 800 cm⁻¹ 處寬闊的強吸收峰對應 C=O

鍵。

光譜Y

在約 3 230-3 670 cm⁻¹ 處寬闊的強吸收峰對應 O-H

鍵(醇)。(1)

光譜Z

在約 1 680-1 800 cm-1 處寬闊的強吸收峰對應 C=O

鍵。(1)

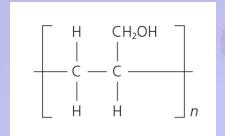
b) 判斷各光譜所代表的化合物。

X — 羧酸

Y — 醇

Z — 酷

(1)



15 a) 化合物 X 是丙醛的同分異構體。它可以經聚合生成結構如下的聚合物。

- i) 繪出 X 的結構。H₂C=CHCH₂OH (1)
- ii) 寫出 X 的系統名稱。丙-2-烯-1-醇 (1)
- iii) X 含有兩個官能基,每個官能基含有的鍵在紅外光譜中都有一個特徵吸收峰。 就每個官能基,各提出一個鍵及其對應的吸收峰。

(參考表 54.1 提供的資料。) C=C 1 610-1 680 cm-1 (1)

 $O-H 3 230-3 670 \text{ cm}^{-1}$ (1)

- b) 化合物 Y 是丙醛的另一個同分異構體。Y 的紅外光譜在 1 680-1 750 cm-1 處有吸收峰。
 - i) 繪出 Y 的結構。 CH₃COCH₃ (1)
 - ii) 丙醛和 Y 是結構異構體,寫出該異構類別的名稱。

官能基異構 (1)

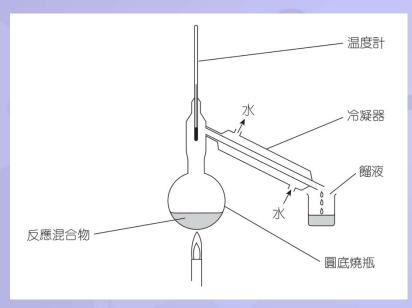
按節練習(頁165)香港公開考試試題答案從略(如適用)。

6 青蒿素是一個從某種植物獲得的有機化合物。青蒿素不能與 NaHCO₃(aq) 發生反應。它的紅外光譜約在 1 700 cm⁻¹ 處顯示一強吸收峰。提出下面 W、X、Y 和 Z 中哪一個會是青蒿素的可能結構。解釋你的答案。

特徵紅外吸收波數域(伸展式)

鍵合	化合物類別	波數域 (cm ⁻¹)
C=C	烯	1 610 至 1 680
C=O	醛、酮、羧酸及其衍生物	1 680 至 1 800
C≡C	炔	2 070 至 2 250
C≡N	腈	2 200 至 2 280
O-H	帶「氫鍵」的酸	2 500 至 3 300
C-H	烷、烯及芳烴	2 840 至 3 095
O-H	帶「氫鍵」的醇	3 230 至 3 670
N-H	胺	3 350 至 3 500

(相對原子質量: H = 1.0, N = 14.0, O = 16.0)



17 乙烷-1,2-二醇 (CH₂OHCH₂OH) 常用於汽車防凍液中,以降低汽車散熱器中 **》**水的凝固温度。

它以類似乙醇的方式反應,但是其兩個羥基都可以反應。

a) 即使在以下條件,乙烷-1,2-二醇也很快被氧化成乙二酸 (COOH)2。

移去温度計 / 蒸餾頭 / 讓冷凝器的頂部 打開。(1) 把冷凝器直接放在瓶子的頂部/垂直擺 放。(1)

然而,乙醇需要在較強的氧化條件下才能轉化成乙酸。 解釋你會如何改變以上的儀器,以達到乙醇這氧化作用

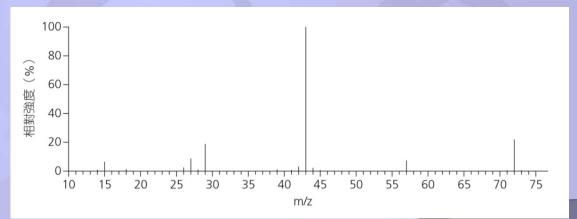
17 (續)

b) 質譜法可用來鑑定乙醇的氧化作用的生成物。提出當乙酸生成時出現 的一種碎塊的化學式,而該碎塊不會存在於乙醇或乙醛中。

(Edexcel Advanced Subsidiary GCE, Unit 2, 6CH02/01R, Jun. 2013, 22(b), (e)(iii))

以下任何一項:

- COOH+ (1)
- CH₃COO⁺ (1)
- CH₃COOH⁺ (1)


- 18 以 2,4-二硝基苯肼測試化合物 X 呈陽性結果,但是以托倫斯試劑測試呈陰性結果。
 - a) 使用 2,4-二硝基苯肼的目的是甚麼?

用作測試化合物有否含醛基團或酮基團 (1)

b) 寫出以 2,4-二硝基苯肼測試 X 的預期觀察結果。

鮮紅色/橙色/黄色的沉澱物 (1)

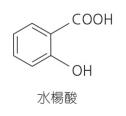
- c) 參考 2,4-二硝基苯肼和托倫斯試劑的測試結果,提出 X 可能含有的官能基。酮基團 (1)
- d) X 的質譜顯示如下:

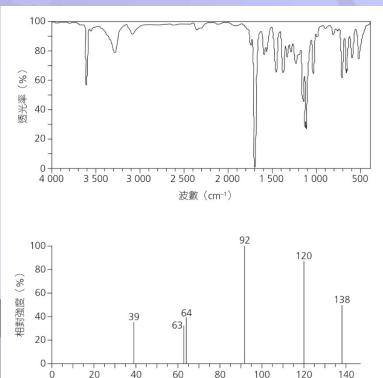
為在 m/z = 43 的訊號,提出一個對應的化學物種

 CH_3CO^+ (1)

- 18 (續)
 - e) 辨認 X。
 - X的相對分子質量是72。
 - X 可能是丁酮。(1)
 - f) 化合物 Y 與 X 具相同的相對分子質量。Y 的紅外光譜在 2 500-3 300 cm⁻¹ 之間有一個寬闊的吸收峰及在 1 680-1 750 cm⁻¹ 之間有一個吸收峰。

辨認 Y,並解釋你的答案。 (參考表 54.1 提供的資料。)


在 2 500-3 300 cm⁻¹ 之間的吸收峰對應 <u>O-H 鍵(酸)</u>。 (1) 在 1 680-1 750 cm⁻¹ 之間的吸收峰對應 <u>C=O 鍵</u>。 (1) Y 是 CH₂=CHCOOH。



19 柳樹的樹皮和葉子可紓緩發燒和疼痛。萃取物的有效成分是水楊酸。

水楊酸的紅外光譜和質譜顯示如下:

質量電荷比 (m/z)

a) 就主要的紅外吸收峰,鑑定對應的鍵。 (參考表 54.1 提供的資料。)

紅外吸收峰	對應的鍵	
3 600 cm ⁻¹	O-H (醇)	(1)
3 200 cm ⁻¹	O-H (酸)	(1)
1 700 cm ⁻¹	C=O	(1)

- 19 (續)
 - b) 解釋水楊酸分子吸收了紅外輻射後,其分子內會發生甚麼。

水楊酸中的鍵吸收了來自某頻率的紅外輻射的能量後,會振動得較頻密。(1)

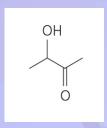
- c) 考慮水楊酸的質譜。
 - i) 辨認母峰。
 - 138 (1)
 - ii) 為在 m/z = 120 的訊號,提出一個對應的化學物種。 $C_6H_4COO^+$ (1)

(相對原子質量:H=1.0,C=12.0,O=16.0)

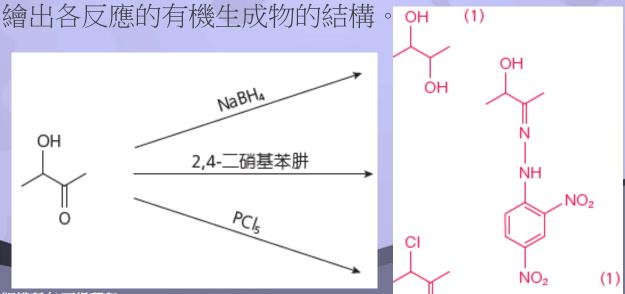
按節練習(頁165)香港公開考試試題答案從略(如適用)。

20 下面所示的化合物X和Y是同分異構體,其相對分子質量為 120。

- a) X 和 Y 各自可與 2,4-二硝基苯肼溶液反應得出一個相似的觀察,寫出該觀察。
- b) 建議一個化學測試來辨別 X 和 Y。
- c) 說明怎樣可從各自的質譜來辨別 X 和 Y。
- d) 参考下表所提供的資料,提出是否可以用紅外光譜法來辨別 X 和 Y。

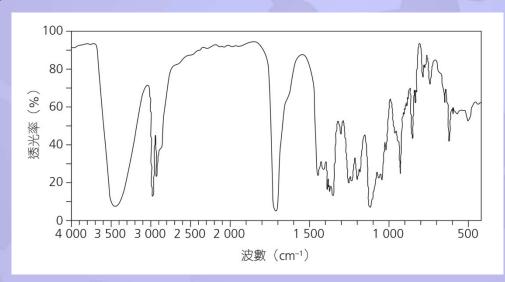

特徵紅外吸收波數域(伸展式)

鍵合	化合物類別	波數域(cm ⁻¹)
C=C	烯	1 610 至 1 680
C=O	醛、酮、羧酸及其衍生物	1 680 至 1 800
C≡C	炔	2 070 至 2 250
C≡N	腈	2 200 至 2 280
O-H	帶「氫鍵」的酸	2 500 至 3 300
C-H	烷、烯及芳烴	2 840 至 3 095
O-H	帶「氫鍵」的醇、酚	3 230 至 3 670
N-H	胺	3 350 至 3 500



21 乙偶姻是天然存在於牛油中的物質。把它添加於食物裏,可增添牛油的味 道。它更被添加到一些香煙,以改良味道。乙偶姻的結構顯示如下:

- a) i) 解釋為甚麼乙偶姻可溶於水。乙偶姻分子能與水分子形成氫鍵。
 - ii)以下展示乙偶姻的一些反應。



21 (續)

b) 化合物 X 是乙偶姻的同分異構體。

- i) 辨認會導致在X的質譜中出現一個峰的離子,但這樣的峰<u>不會</u>在乙偶姻的質譜中出現。 CH₃CH₂CH₂+ / CH₃CH₂+ / CH₂+ / COOH+ / COO+ (1)
- ii) 兩個同分異構體的其中一個的紅外光譜顯示如下:

辨認該同分異構體,並解釋你的答案。乙偶姻 (參考表 54.1 提供的資料。) 在約 3

△悔姻 在約 **3 230–3 670 cm⁻¹** 處的<u>吸</u> 收峰對應 O–H 鍵(醇)。(1)

22 a) 松木帶有獨特的氣味,部分是由於含有一組稱為萜烯的化合物。其中 一種簡單的萜烯化合物稱為香葉醇,在常温常壓下是一種油性液體。 香葉醇的結構顯示如下:

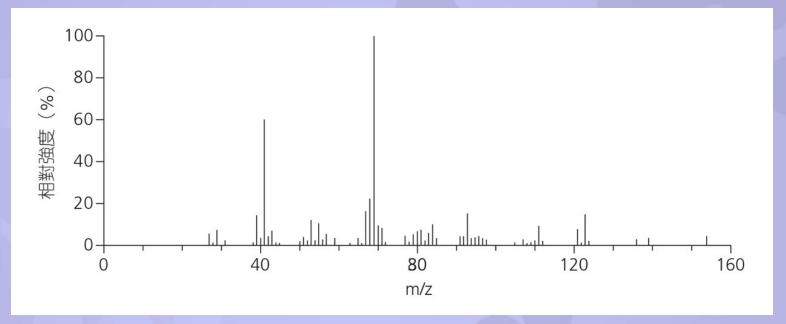
推定香葉醇的分子式。利用你的答案計算香葉醇的摩爾質量 (以 g mol⁻¹ 為單位)。

(相對原子質量: H = 1.0, C = 12.0, O = 16.0)

香葉醇的結構是:

香葉醇的分子式是 C₁₀H₁₈O。 (1)

5葉醇的摩爾質量 = (10 x 12.0 + 18 x 1.0 + 16.0) g mol-1

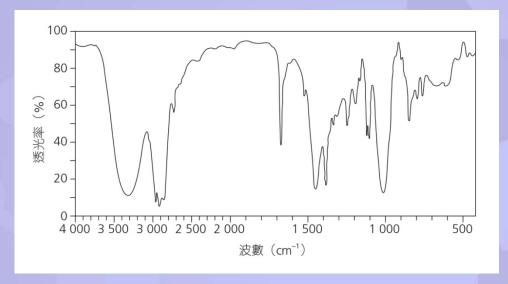


(續)

香葉醇的質譜顯示如下:

- i) 提出如何用這質譜來確定香葉醇的摩爾質量。 右方最遠的峰的 m/z 值相等於 154。/ 最大的 m/z 值是 154。 (1)
- ii) 為在 m/z = 69 的訊號,提出一個對應的離子。

$$C_5H_9^+$$
 (1)



22

(續)

<u>(線)</u>

c) 香葉醇的紅外光譜顯示如下:

利用表 54.1 和紅外光譜,提出兩個存在於香葉醇的官能基的名稱。 為確定這些官能基,提出波數區域和它們所對應的鍵。

官能基	波數區域	
碳-碳雙鍵	1 610–1 680	(1)
O-H 鍵(醇)	3 230–3 670	(1)

22 (續)

d) 為在 (c) 提及的兩個官能基各舉出一個化學試驗,用以確定它們的 存在。預測每個試驗的結果。

(Edexcel Advanced Subsidiary GCE, Paper 2, Jun. 2017, 4(a)–(d))

碳-碳雙鍵

把溴水慢慢加入香葉醇中。(1) 溴水迅速地由棕黃色變成無色。(1)

把香葉醇與五氯化磷混合。(1) 可觀察到白色煙霧。 (1)

23 光譜技術可用來辨別以下所示的化合物 X 和 Y。

提出如何能從以下每種光譜辨別化合物X和Y。

a) 紅外光譜

只有 Y 的紅外光譜在 $3\,350-3\,500\,\mathrm{cm}^{-1}$ 處有一個對應 N-H 鍵的吸收峰。 (1) 兩個紅外光譜有不同的指紋區。 (1)

b) 質譜

(相對原子質量: H = 1.0, C = 12.0, N = 14.0, O = 16.0)

(參考表 54.1 提供的資料。)

兩種化合物的質譜有<u>不同的母峰</u> (X 的母峰在 m/z = 88 處; Y 的母峰則 在 m/z = 89 處)。 (1)

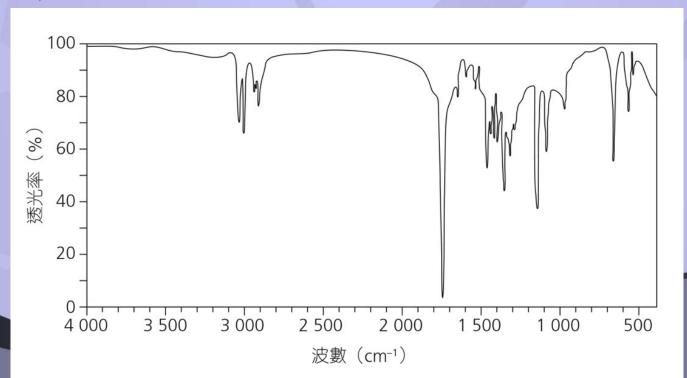
兩種化合物有不同的碎裂模式。 (1)

X 的光譜出現以下的峰:

m/z 值	對應的化學物種	
71	(CH ₃) ₂ CHCO ⁺	(1)
43	CH₃CHCH₃ ⁺	(1)

Y的光譜出現以下的峰(以下任何兩項):

m/z 值	對應的化學物種	
72	CH₃(NH₂)CHCO⁺	(1)
44	H₂NCHCH₃ ⁺	(1)
29	H₂NCH ⁺	(1)
16	NH ₂ ⁺	(1)



24 在室温下,**T**(**C**_x**H**_y**O**_z) 是一無色油狀液體,且不與水混和。再者,**T** 不與 NaHCO₃(aq) 反應。

- a) 參考以下資料,推定T可能具有的官能基(一個或多個)。
 - i) T 不是酯,並且它與托倫斯試劑得出陰性結果。
 - ii) T給出以下的紅外光譜:

24

(續)

香港公開考試試題答案從略 (如適用)。

特徵紅外吸收波數域(伸展式)

鍵合	化合物類別	波數域(cm ⁻¹)
C=C	烯	1 610 至 1 680
C=O	醛、酮、羧酸及其衍生物	1 680 至 1 800
C≡C	炔	2 070 至 2 250
C≡N	腈	2 200 至 2 280
O-H	帶「氫鍵」的酸	2 500 至 3 300
C-H	烷、烯及芳烴	2 840 至 3 095
O-H	帶「氫鍵」的醇、酚	3 230 至 3 670
N-H	胺	3 350 至 3 500

- b) T質譜在 m/z = 134 處呈現一個母峰,並在 m/z = 43 和 91 處呈現一個強峰。為在 m/z = 43 和 134 的訊號,分別提出<u>一個</u>對應的化學物種。
- c) 繪畫T的一個可能結構。

(HKDSE, Paper 2, 2014, 3(c)(ii)-(iv))

