Mastering Chemistry

- Book 2A
- Topic 4 Acids and Bases

Content

-15.1 Concentration of a solution
15.2 Indicators
15.3 The pH scale
15.4 Measuring pH values of solutions
15.5 Strong acids and weak acids
15.6 Methods for comparing the strengths of acids
\Rightarrow 15.7 Strong alkalis and weak alkalis 15.8 Concentration versus strength

Unit 15 Molarity, pH scale and strengths of acids and alkalis

Content

Key terms
 Summary
 Unit Exercise

15.1 Concentration of a solution (p.44)

- The concentration of a solution tells how much solute is dissolved in a certain volume of solution.
- In chemistry, the concentration of a solution is normally expressed in molarity (or molar concentration), i.e. the number of moles of solute dissolved in one cubic decimeter $\left(\mathrm{dm}^{3}\right)$ of solution.
- The units of molarity are $\mathrm{mol} \mathrm{dm}^{-3}$ or $\mathrm{M} .1 \mathrm{~mol} \mathrm{dm}^{-3}$ means there is 1 mole of solute per cubic decimetre of solution; 2 mol dm^{-3} means there are 2 moles of solute per cubic decimetre of solution, and so on.

15.1 Concentration of a solution (p.44)

1 mole of copper(II) nitrate, $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{~s})$

dissolve to make $1 \mathrm{dm}^{3}$ of solution: concentration $=1 \mathrm{~mol} \mathrm{dm}^{-3}$

dissolve to make $2 \mathrm{dm}^{3}$ of solution: concentration $=0.5 \mathrm{~mol} \mathrm{dm}^{-3}$

2 moles of copper(II) nitrate, $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{~s})$

dissolve to make $1 \mathrm{dm}^{3}$ of solution: concentration
$=2 \mathrm{~mol} \mathrm{dm}^{-3}$

dissolve to make $2 \mathrm{dm}^{3}$ of solution: concentration
$=1 \mathrm{~mol} \mathrm{dm}^{-3}$

15.1 Concentration of a solution (p.44)

- The molarity of a solution is given by the following expression:

$$
\text { Molarity of solution }=\frac{\text { number of moles of solute }(\mathrm{mol})}{\text { volume of solution }(\mathrm{dm} 3)}
$$

- If any one of the sections of the triangle is covered, the relationship between the other two quantities gives the covered quantity.

J Jing Kung Educational Press All Rights Reserved

15.1 Concentration of a solution (p.44)

- The number of moles of solute in a solution is given by the following expression:

Number of moles of solute in solute $=$ molarity x volume of solution (in dm^{3})

15.1 Concentration of a solution (p.44)

Q (Example 15.1)

A car battery contains 2350 g of sulphuric acid in $6.00 \mathrm{dm}^{3}$ of the battery liquid. What is the concentration of sulphuric acid (in $\mathrm{mol} \mathrm{dm}^{-3}$)?
(Relative atomic masses: $\mathrm{H}=1.0, \mathrm{O}=16.0, \mathrm{~S}=32.1$) A
Molar mass of $\mathrm{H}_{2} \mathrm{SO}_{4}=(2 \times 1.0+32.1+4 \times 16.0) \mathrm{g} \mathrm{mol}^{-1}$

$$
=98.1 \mathrm{~g} \mathrm{~mol}^{-1}
$$

Number of moles of $\mathrm{H}_{2} \mathrm{SO}_{4}=\frac{\text { mass }}{\text { molar mass }}$

$$
\begin{aligned}
& =\frac{2350 \mathrm{~g}}{98.1 \mathrm{~g} \mathrm{~mol}^{-1}} \\
& =24.0 \mathrm{~mol}
\end{aligned}
$$

Concentration of $\mathrm{H}_{2} \mathrm{SO}_{4}=\frac{\text { number of moles of } \mathrm{H}_{2} \mathrm{SO}_{4}}{\text { volume of solution }}$

$$
=\frac{24.0 \mathrm{~mol}}{6.00 \mathrm{dm}^{3}}
$$

$$
=4.00 \mathrm{~mol} \mathrm{dm}^{-3}
$$

the concentration of sulphuric acid is $4.00 \mathrm{~mol} \mathrm{dm}^{-3}$

15.1 Concentration of a solution (p.44)

Q (Example 15.2)

What is the mass of zinc nitrate $\left(\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}\right)$ required to prepare $500.0 \mathrm{~cm}^{3}$ of $0.640 \mathrm{~mol} \mathrm{dm}^{-3}$ solution?
(Relative atomic masses: $\mathrm{N}=14.0, \mathrm{O}=16.0, \mathrm{Zn}=65.4$)
A
Number of moles of $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}=$ molarity x volume of solution (in dm^{3})

$$
\begin{aligned}
& =0.640 \mathrm{~mol} \mathrm{dm}^{-3} \times \frac{500.0}{1000} \mathrm{dm}^{-3} \\
& =0.320 \mathrm{~mol}^{3}
\end{aligned}
$$

Molar mass of $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}=(65.4+2 \times 14.0+6 \times 16.0) \mathrm{g} \mathrm{mol}^{-1}$

$$
=189.4 \mathrm{~g} \mathrm{~mol}^{-1}
$$

Mass of $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}$ required
= number of moles of $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} \times$ molar mass of $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}$
$=0.320 \mathrm{~mol}^{18} 189.4 \mathrm{~g} \mathrm{~mol}^{-1}$
$=60.6 \mathrm{~g}$
60.6 g of zinc nitrate are required.

15.1 Concentration of a solution (p.44)

Q (Example 15.3)

$100.0 \mathrm{~cm}^{3}$ of $1.20 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{FeSO}_{4}(\mathrm{aq})$ are mixed with $200.0 \mathrm{~cm}^{3}$ of $0.700 \mathrm{~mol} \mathrm{dm}^{-3}$ $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}(\mathrm{aq})$. What is the concentration of $\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})$ ions in the resulting mixture?

A

1 mole of FeSO_{4} contains 1 mole of $\mathrm{SO}_{4}{ }^{2-}$ ions.
Number of moles of $\mathrm{SO}_{4}{ }^{2-}$ ions in $\mathrm{FeSO}_{4}(\mathrm{aq})=1.20 \mathrm{~mol} \mathrm{dm}^{-3} \times \frac{100.0}{1000} \mathrm{dm}^{3}$

$$
=0.120 \mathrm{~mol}
$$

1 mole of $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ contains 3 mole of $\mathrm{SO}_{4}{ }^{2-}$ ions.
Number of moles of $\mathrm{SO}_{4}{ }^{2-}$ ions in $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}=3 \times 0.700 \mathrm{~mol} \mathrm{dm}^{-3} \times \frac{200.0}{1000} \mathrm{dm}^{3}$

$$
=0.420 \mathrm{~mol}
$$

Total number of moles of $\mathrm{SO}_{4}{ }^{2-}$ ions $=(0.120+0.420) \mathrm{mol}$

$$
=0.540 \mathrm{~mol}
$$

Total volume of resulting mixture $=(100.0+200.0) \mathrm{cm}^{3}$

$$
=300.0 \mathrm{~cm}^{3}
$$

Concentration of $\mathrm{SO}_{4}{ }^{2-}$ ions in resulting mixture $=\frac{0.540 \mathrm{~mol}}{\left(\frac{300.0}{1000}\right) \mathrm{dm}^{3}}$
\therefore the concemmat $\mathrm{SO}_{4}{ }^{2-}$ ions in resulting mixture is $1.80 \mathrm{~mol} \mathrm{dm}^{-3}$.

15.1 Concentration of a solution (p.44)

Practice 15.1
1 What is the concentration (in $\mathrm{mol} \mathrm{dm}^{-3}$) of a solution of sodium carbonate $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$ that contains 47.7 g of solute in $1.80 \mathrm{dm}^{3}$ of solution?
(Relative atomic masses: $\mathrm{C}=12.0, \mathrm{O}=16.0, \mathrm{Na}=23.0$)
2 A sample of potassium hydrogenphthalate $\left(\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{O}_{4} \mathrm{~K}\right)$ is dissolved completely in deionised water and then diluted to $250.0 \mathrm{~cm}^{3}$. A solution of concentration $0.0280 \mathrm{~mol} \mathrm{dm}^{-3}$ is obtained. What is the mass of the sample?
(Relative atomic masses: $\mathrm{H}=1.0, \mathrm{C}=12.0, \mathrm{O}=16.0, \mathrm{~K}=39.1$)
$320.0 \mathrm{~cm}^{3}$ of $1.00 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{KCl}(\mathrm{aq})$ are mixed with $30.0 \mathrm{~cm}^{3}$ of $2.00 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~K}_{2} \mathrm{SO}_{4}(\mathrm{aq})$. What is the concentration of $\mathrm{K}^{+}(\mathrm{aq})$ ions in the resulting mixture?

15.1 Concentration of a solution (p.44)

Practice 15.1 (continued)

1 Molar mass of $\mathrm{Na}_{2} \mathrm{CO}_{3}=(2 \times 23.0+12.0+3 \times 16.0) \mathrm{g} \mathrm{mol}^{-1}$

$$
=106.0 \mathrm{~g} \mathrm{~mol}^{-1}
$$

Number of moles of $\mathrm{Na}_{2} \mathrm{CO}_{3}=\frac{\text { mass }}{\text { molar mass }}$

$$
\begin{aligned}
& =\frac{47.7 \mathrm{~g}}{106.0 \mathrm{~g} \mathrm{~mol}} \\
& =0.450 \mathrm{~mol}
\end{aligned}
$$

Molarity of sodium carbonate solution $=\frac{\text { number of moles of } \mathrm{Na}_{2} \mathrm{CO}_{3}}{\text { volume of solution }}$

$$
\begin{aligned}
& =\frac{0.450 \mathrm{~mol}}{1.80 \mathrm{dm}^{3}} \\
& =0.250 \mathrm{~mol} \mathrm{dm}^{-3}(\mathrm{M})
\end{aligned}
$$

\therefore concentration of the solution is $0.250 \mathrm{~mol} \mathrm{dm}^{-3}$.
2 Molarity of potassium hydrogenphthalate solution $=\frac{\text { number of moles of } \mathrm{C}_{8} \mathrm{H}_{5} \mathrm{O}_{4} \mathrm{~K}}{\text { volume of solution }}$

$$
0.0280 \mathrm{~mol} \mathrm{dm}^{-3}=\frac{\text { number of moles of } \mathrm{C}_{8} \mathrm{H}_{5} \mathrm{O}_{4} \mathrm{~K}}{\frac{250.0}{1000} \mathrm{dm}^{3}}
$$

Number of moles of $\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{O}_{4} \mathrm{~K}=0.0280 \mathrm{~mol} \mathrm{dm}^{-3} \times \frac{250.0}{1000} \mathrm{dm}^{3}$

$$
=0.00700 \mathrm{~mol}
$$

Molar mass of $\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{O}_{4} \mathrm{~K}=(8 \times 12.0+5 \times 1.0+4 \times 16.0+39.1) \mathrm{g} \mathrm{mol}^{-1}$

$$
=204.1 \mathrm{~g} \mathrm{~mol}^{-1}
$$

Mass of sample $=$ number of moles of $\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{O}_{4} \mathrm{~K} \times$ molar mass of $\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{O}_{4} \mathrm{~K}$
$=0.00700 \mathrm{~mol}^{2} 204.1 \mathrm{~g} \mathrm{~mol}^{-1}$
$=1.43 \mathrm{~g}$
\therefore the mass of the sample is 1.43 g .
Jing Kung Educational Press All Rights Reserved

15.1 Concentration of a solution (p.44)
 Practice 15.1 (continued)

31 mole of KCl contains 1 mole of K^{+}ions.
Number of moles of K^{+}ions in $\mathrm{KCl}(\mathrm{aq})=1.00 \mathrm{~mol} \mathrm{dm}^{-3} \times \frac{20.0}{1000} \mathrm{dm}^{3}$

$$
=0.0200 \mathrm{~mol}
$$

1 mole of $\mathrm{K}_{2} \mathrm{SO}_{4}$ contains 2 moles of K^{+}ions.
Number of moles of K^{+}ions in $\mathrm{K}_{2} \mathrm{SO}_{4}(\mathrm{aq})=2 \times 2.00 \mathrm{~mol} \mathrm{dm}^{-3} \times \frac{30.0}{1000} \mathrm{dm}^{3}$

$$
=0.120 \mathrm{~mol}
$$

Total number of moles of K^{+}ions $=(0.0200+0.120) \mathrm{mol}$

$$
=0.140 \mathrm{~mol}
$$

Total volume of resulting mixture $=(20.0+30.0) \mathrm{cm}^{3}$

$$
=50.0 \mathrm{~cm}^{3}
$$

Concentration of K^{+}ions in resulting mixture $=\frac{0.140 \mathrm{~mol}}{\frac{50.0}{1000} \mathrm{dm}^{3}}$

$$
=2.80 \mathrm{~mol} \mathrm{dm}^{-3}
$$

\therefore the concentration of $\mathrm{K}^{+}(\mathrm{aq})$ ions in the resulting mixture is $2.80 \mathrm{~mol} \mathrm{dm}^{-3}$.

15．2 Indic ators（p．48）

－Many indicators（指示劑）are dyes extracted from natural sources．Litmus solution is an example．It is purple in neutral solutions．When litmus solution（石㕖試液）is added to an acid，it turns red．When added to an alkali，it turns blue．

15．2 Indic ators（p．48）

－Litmus paper（石苰試紙）is paper that has been soaked in litmus solution．It comes in blue and red forms．
－Blue litmus paper turns red in an acid．Red litmus paper turns blue in an alkali．

Blue litmus paper turns red in an acid
 ADVANTEC AED LITMus ＂

Red litmus paper turnsefore in an alkali

15．2 Indic ators（p．48）

－Others that have been frequently used are methyl orange（甲基橙試液）and phenolphthalein（酚酞試液）．They give colour changes different from litmus solution．
dilute hydrochloric acid

dilute sodium
hydroxide solution

dilute hydrochloric acid

dilute sodium hydroxide solution

15.2 Indic ators (p.48)

Indicator	Colour in dilute hydrochloric acid	Colour in dilute sodium hydroxide solution		
Methyl orange	red		yellow	
Phenolphthalein		colourless		pink

15.3 The pH scale (p.49)

- You can say how acidic or alkaline a solution is by a scale of numbers called the $\mathbf{p H}$ scale ($\mathbf{p H}$ 標度).
- pH is a measure of the concentration of hydrogen ions in a solution. The concentration of hydrogen ions can be stated in $\mathrm{mol} \mathrm{dm}{ }^{-3}$.
- In different solutions, the concentration of hydrogen ions can have a wide range of values (from about $1 \mathrm{~mol} \mathrm{dm}^{-3}$ to 10^{-14} $\mathrm{mol} \mathrm{dm}{ }^{-3}$). The use of $\log 10$ function simplifies the numbers involved.

15.3 The pH scale (p.49)

- The pH scale is defined by the expression:

$\mathrm{pH}=-\log _{10}\left[\mathrm{H}^{+}(\mathrm{aq})\right]$

- Because pH values are logarithms, they have no units.
- The concentration of hydrogen ions in a solution from its pH value can be calculated by using the expression:

$\left[\mathrm{H}^{+}(\mathrm{aq})\right]=10^{-\mathrm{pH}}$

15.3 The pH scale (p.49)

Q (Example 15.4)
A $0.120 \mathrm{~mol} \mathrm{dm}^{-3}$ nitric acid $\left(\mathrm{HNO}_{3}(\mathrm{aq})\right)$ is prepared. The acid dissociates into hydrogen ions and nitrate ions completely in water. What is its pH value?
A

$$
\mathrm{HNO}_{3}(\mathrm{aq}) \longrightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{NO}_{3}^{-}(\mathrm{aq})
$$

$$
0.120 \mathrm{~mol} \mathrm{dm}^{-3} \quad 0.120 \mathrm{~mol} \mathrm{dm}^{-3}
$$

According to the equation, 1 mole of HNO_{3} dissociates to give 1 mole of hydrogen ions.
i.e. $\left[\mathrm{H}^{+}(\mathrm{aq})\right]=0.120 \mathrm{~mol} \mathrm{dm}^{-3}$
pH of acid $=-\log _{10}(0.120)$

$$
\begin{aligned}
& =-(-0.921) \\
& =0.921
\end{aligned}
$$

The pH value of the nitric acid is 0.921

J K Jing Kung Educational Press All Rights Reserved

15.3 The pH scale (p.49)

Q (Example 15.5)

The pH of a sample of lemon juice is 2.15 . What is the concentration of hydrogen ions in the lemon juice?
A

$$
\begin{aligned}
{\left[\mathrm{H}^{+}(\mathrm{aq})\right] } & =10^{-\mathrm{pH}} \\
& =10^{-2.15} \\
& =7.08 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}
\end{aligned}
$$

\therefore the concentration of hydrogen ions in the lemon juice is $7.08 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$.

15.3 The pH scale (p.49)

Practice 15.2

1 A bottle of hydrochloric acid is shown below. It is known that the acid dissociates into hydrogen ions and chloride ions completely. Hydrochloric acid dissociates completely according to the following equation:

$\mathrm{HCl}(\mathrm{aq}) \longrightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$
$0.0500 \mathrm{~mol} \mathrm{dm}^{-3} \quad$? $\mathrm{mol} \mathrm{dm}^{-3}$
According to the equation, 1 mole of HCl dissociates to give 1 mole of hydrogen ions.
i.e. concentration of hydrogen ions $=0.0500 \mathrm{~mol} \mathrm{dm}^{-3}$
pH of acid $=-\log _{10}(0.0500)=-(-1.30)=1.30$
What is the pH of the acid?

15.3 The pH scale (p.49)

Practice 15.2 (continued)

2 A calcium hydroxide solution has a pH of 11.9. What is the concentration of hydrogen ions in the solution? pH of calcium hydroxide solution $=11.9$
i.e. $\log _{10}\left[\mathrm{H}^{+}(\mathrm{aq})\right]=-11.9$

$$
\begin{aligned}
{\left[\mathrm{H}^{+}(\mathrm{aq})\right] } & =10^{-11.9} \mathrm{~mol} \mathrm{dm}^{-3} \\
& =1.26 \times 10^{-12} \mathrm{~mol} \mathrm{dm}^{-3}
\end{aligned}
$$

15．3 The pH scale（p．49）

－The range of a pH scale is from 0 to 14 ．

On this scale，

- a solution with a pH less than 7 is acidic（酸性）；
- a solution with a pH of exactly 7 is neutral（中性）；
- a solution with a pH more than 7 is alkaline（鹼性）．
－The lower the pH ，the more acidic the solution is．The higher the pH ，the more alkaline the solution is．

neutral

15.3 The pH scale (p.49)

- A pH value of 1 means that the concentration of hydrogen ions in the solution is $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$. A pH of 2 means that the concentration of hydrogen ions in the solution is $0.01 \mathrm{~mol} \mathrm{dm}^{-3}$. So as the concentration of hydrogen ions increases by a factor of 10 , the pH value decreases by 1 .

pH	Concentration of hydrogen ions $\left(\mathrm{mol} \mathrm{dm}^{-3}\right)$	pH	Concentration of hydrogen ions $\left(\mathrm{mol} \mathrm{dm}^{-3}\right)$
0	$1 \times 10^{0}=1.0$	8	$1 \times 10^{-8}=0.00000001$
1	$1 \times 10^{-1}=0.1$	9	$1 \times 10^{-9}=0.000000001$
2	$1 \times 10^{-2}=0.01$	10	$1 \times 10^{-10}=0.0000000001$
3	$1 \times 10^{-3}=0.001$	11	$1 \times 10^{-11}=0.00000000001$
4	$1 \times 10^{-4}=0.0001$	12	$1 \times 10^{-12}=0.000000000001$
5	$1 \times 10^{-5}=0.00001$	13	$1 \times 10^{-13}=0.0000000000001$
6	$1 \times 10^{-6}=0.000001$	14	$1 \times 10^{-14}=0.00000000000001$
7	$1 \times 10^{-7}=0.0000001$		

15．4 Measuring pH values of solutions（p．53）

Universal indicator solution
－Universal indicator solution（通用指示劑溶液）is a mixture of indicators that has different colours in solutions of different pH values．
－Universal indicator solution gives a bright red colour in more acidic solutions（e．g．battery acid）．It gives a violet colour in more alkaline solutions．Classifying substances as acidic，alkaline or neutral using different indicators Ref．

15.4 Measuring pH values of solutions ($p .53$)

- To measure the pH of a solution, add a few drops of universal indicator solution to the solution. Compare the colour obtained with a standard pH colour chart.
- pH paper (pH 試紙) can be used to measure the pH of a solution.

Jing Kung Educational Press All Rights Reserved

J K

15.4 Measuring pH values of solutions (p .53)

pH values of some common solutions
din
Jing Kung Educational Press All Rights Reserved

15.4 Measuring pH values of solutions ($p .53$)

pH meter

- The $\mathbf{p H}$ meter ($\mathbf{p H}$ 計) provides a more accurate measure of pH . When the electrode is placed in a solution, the meter gives a reading of pH .

A pH meter with an electrode in an alkaline solution

Jing Kung Educational Press All Rights Reserved

15．4 Measuring pH values of solutions（ $p .53$ ）

pH sensor attached to data－logger
－A pH sensor（ pH 感應器）can be attached to a data－logger （數據收集儀）to measure the pH of a solution accurately． Place the pH sensor in the solution being tested．A reading of pH is shown on the system display．

15.4 Measuring pH values of solutions (p.53)

Practice 15.3

The following table shows the colours of universal indicator solution at different pH values.

Colour	red	orange	yellow	green	blue	navy blue	purple
pH range	$0-2$	$3-4$	$5-6$	7	$8-9$	$10-12$	$13-14$

a) The universal indicator solution appears yellow when added to a sample of saliva. pH 5-6
i) Give the pH range of the saliva. Saliva is weakly acidic.
ii) State what the pH range tells you about the saliva.
b) The universal indicator solution appears purple when added to an oven cleanser.
i) Give the pH range of the cleanser. pH 13-14
ii) State what the pH range tells you about cleanser. Oven cleanser is strongly altrine.

15.5 Strong acids and weak acids (p.55)

- Not all acids are equally strong. The ethanoic acid (found in vinegar) used to make pickle vegetables is significantly less acidic than hydrochloric acid of the same concentration.
- When hydrogen chloride gas dissolves in water, almost all the hydrogen chloride molecules dissociate to give hydrogen ions and chloride ions.

$$
\mathrm{HCl}(\mathrm{~g}) \longrightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})
$$

- Hydrochloric acid is a strong acid (強酸).

A strong acid is an acid that dissociates almost completely in water to give hydrogen ions.

15.5 Strong acids and weak acids (p.55)

- Sulphuric acid and nitric acid are also strong acids.

(a) Hydrochloric acid contains lots of hydrogen ions;
(b) ethanoic acid of the same concentration contains only a few hydrogen ions

15.5 Strong acids and weak acids (p.55)

- When pure ethanoic acid dissolves in water, only a small fraction of the molecules dissociate into hydrogen ions and ethanoate ions $\left(\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})\right)$.

$$
\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})
$$

- Ethanoic acid is a weak acid (弱酸).

A weak acid is an acid that dissociates partially in water to give hydrogen ions.

15.5 Strong acids and weak acids (p.55)

- Carbonic acid is formed when carbon dioxide dissolves in water.

$$
\mathrm{CO}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})
$$

- It is also a weak acid. Its dissociations are described by the ionic equations below.

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{HCO}_{3}^{-}(\mathrm{aq}) \\
& \mathrm{HCO}_{3}^{-}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq})
\end{aligned}
$$

Acid

Ethanoic acid Main types of particle present (besides water molecules)
$\mathrm{H}^{+}(\mathrm{aq}), \mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq}), \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})$

Carbonic acid
$\mathrm{H}^{+}(\mathrm{aq}), \mathrm{HCO}_{3}{ }^{-}(\mathrm{aq}), \mathrm{CO}_{3}{ }^{2-}(\mathrm{aq}), \mathrm{CO}_{2}(\mathrm{aq}), \mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})$

Distinguishing between a strong acid and a weak acid Ref.

15.5 Strong acids and weak acids (p.55)

Q (Example 15.6)

Consider the four solutions $\mathrm{W}, \mathrm{X}, \mathrm{Y}$ and Z listed below.
W: $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}(\mathrm{aq})$
X: $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$
$\mathrm{Y}: 0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}(\mathrm{aq})$
$\mathrm{Z}: 0.01 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}(\mathrm{aq})$
Arrange the above four solutions in increasing order of pH .

15.5 Strong acids and weak acids (p.55)

A

Both $\mathrm{HCl}(\mathrm{aq})$ and $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ are strong acids. They dissociate almost completely in water.
$\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ is a dibasic acid while $\mathrm{HCl}(\mathrm{aq})$ is a monobasic acid.
Thus, $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ has a higher concentration of hydrogen ions than $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}(\mathrm{aq})$.
The pH of $\mathrm{X}\left(0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})\right)$ is lower than that of $\mathrm{W}\left(0.1 \mathrm{~mol} \mathrm{dm}^{-3}\right.$ $\mathrm{HCl}(\mathrm{aq}))$.
$0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}(\mathrm{aq})$ is more alkaline than $0.01 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}(\mathrm{aq})$.
Thus, the pH of $\mathrm{Y}\left(0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}(\mathrm{aq})\right.$ is higher than that of $\mathrm{Z}(0.01 \mathrm{~mol}$ $\mathrm{dm}^{-3} \mathrm{NaOH}(\mathrm{aq})$.
The increasing order of pH of the above four solutions is $\mathrm{X}<\mathrm{W}<\mathrm{Z}<\mathrm{Y}$.

15.6 Methods for comparing the strengths of acids (p.58)

Measuring the pH value

- The pH of $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid is 1 while that of $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$ ethanoic acid is 2.9 .
- Hydrochloric acid is a strong acid while ethanoic acid is a weak acid. Hydrochloric acid dissociates more and produces a higher concentration of hydrogen ions. Thus, its pH is lower.

15.6 Methods for comparing the strengths of acids (p.58)

Electrical conductivity

- The bulb glows more brightly with hydrochloric acid than it does with ethanoic acid.

> Experimental set-up for comparing the electrical conductivities of 0.1 mol dm and $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$ ethanoic acid

- The electrical conductivity of a solution is proportional to the concentration of mobile ions. Hydrochloric acid dissociates more, so the concentration of mohileions is higher. Thus, it is a better conductor of electricity.

15.6 Methods for comparing the strengths of acids (p.58)
 Reaction with magnesium
 - Add identical magnesium ribbons to each acid separately. More rapid bubbling occurs with hydrochloric acid
 - Hydrochloric acid has a higher concentration of hydrogen ions and thus reacts more rapidly than

 ethanoic acid with magnesium to form hydrogen gas.| | $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}(\mathrm{aq})$ | $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})$ |
| :---: | :---: | :---: |
| $\left[\mathrm{H}^{+}(\mathrm{aq})\right.$] | $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$ | $\sim 0.0013 \mathrm{~mol} \mathrm{dm}^{-3}$ |
| pH | 1 | 2.9 |
| Electrical conductivity | high | low |
| Relative rate of reaction with magnesium | high | low |

15.7 Strong alkalis and weak alkalis (p.59)

A strong alkali is an alkali that dissociates almost completely in water to give hydroxide ions $\left(\mathrm{OH}^{-}\right.$ (aq)).
A weak alkali is an alkali that dissociates partially in water to give a small amount of hydroxide ions ($\mathrm{OH}^{-}(\mathrm{aq})$).Strong and weak alkalis Ref.

15.7 Strong alkalis and weak alkalis (p.59)

- Sodium hydroxide is a strong alkali. It almost completely dissociates into ions in water.
$\mathrm{NaOH}(\mathrm{s})+$ water $\longrightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
- Potassium hydroxide and barium hydroxide are also strong alkalis.

(a) Sodium hydroxide dissociates almost completelw water;
(b) only a small fraction of ammonia molecules react with water

J K Jing Kung Educational Press All Rights Reserved

15.7 Strong alkalis and weak alkalis (p.59)

- Ammonia, on the other hand, is a weak alkali. When ammonia dissolves in water, only a small fraction of the molecules react with water molecules to form hydroxide ions.

$$
\mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

	$0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}(\mathrm{aq})$	$0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NH}_{3}(\mathrm{aq})$
pH	13	11
Electrical conductivity	high	low

- Sodium hydroxide solution has a higher concentration of hydroxide ions. Thus, its pH is higher.
- Sodium hydroxide solution is a better conductor of electricity because it has a higher concentration of mobile ions.

15.8 Concentration versus strength ($p .61$)

- The term concentrated, as applied to an acid, means that a relatively large amount of the pure acid has been dissolved in a relatively small volume of water. Thus, a $6 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of hydrochloric acid is a concentrated solution of a strong acid while a $6 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of ethanoic acid is a concentrated solution of a weak acid.

15.8 Concentration versus strength (p.61)

- The strength of an acid refers to how much it dissociates in water. No matter how concentrated a solution of ethanoic acid is, it will never become a strong acid because it always dissociates partially.
- Hydrochloric acid remains to be a strong acid even when diluted because it always dissociates completely.

15.8 Conc entration versus strength (p.61)

Practice 15.4

1 HX and HY are monobasic acids. Beaker 1 contains $100 \mathrm{~cm}^{3}$ of $0.10 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HX}(\mathrm{aq})$ and beaker 2 contains $100 \mathrm{~cm}^{3}$ of $0.00010 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HY}(\mathrm{aq})$. Both solutions have a pH of 4.0 .

beaker 1

beaker 2

Which of the acid, HX or HY , is stronger? Explain your answer. 2 Suggest how you can show that $\mathrm{NaOH}(\mathrm{aq})$ is a stronger alkali than $\mathrm{NH}_{3}(\mathrm{aq})$ through an experiment.

15.8 Conc entration versus strength (p.61)
 Practice 15.4 (continued)

1 pH of both acids $=4.0$
i.e. $\log _{10}\left[\mathrm{H}^{+}(\mathrm{aq})\right]$ in both acids $=-4.0$
[$\left.\mathrm{H}^{+}(\mathrm{aq})\right]$ in both acids
$=10^{-4.0}$
$=1.0 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$
$\mathrm{HY}(\mathrm{aq})$ is a strong acid.
$0.00010 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HY}(\mathrm{aq})$ dissociates almost completely in water to give $1.0 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{H}^{+}(\mathrm{aq})$ ions.
$\mathrm{HX}(\mathrm{aq})$ is a weak acid.
$0.10 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HX}(\mathrm{aq})$ contains $1.0 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$ of $\mathrm{H}^{+}(\mathrm{aq})$ ions. Hence it can be deduced that $\mathrm{HX}(\mathrm{aq})$ dissociates partially in water.
2 Method and observation
Any one of the following:

- Measure the pH of each alkali.

The pH of $\mathrm{NH}_{3}(\mathrm{aq})$ is lower than that of $\mathrm{NaOH}(\mathrm{aq})$.

- Measure the electrical conductivity of each alkali.

The electrical conductivity of $\mathrm{NH}_{3}(\mathrm{aq})$ is lower than that of $\mathrm{NaOH}(\mathrm{aq})$.

- Measure the temperature rise when each alkali is neutralised by dilute hydrochloric acid of the same concentration.
The temperature rise of $\mathrm{NH}_{3}(\mathrm{aq})$ is lower than that of $\mathrm{NaOH}(\mathrm{aq})$.
Conditions for performing a fair composition
pH - same concentration of $\mathrm{NH}_{3}(\mathrm{aq})$ and $\mathrm{NaOH}(\mathrm{aq})$
- Electrical conductivity - same concentration and volume of $\mathrm{NH}_{3}(a c)$ na $\mathrm{NaOH}(\mathrm{aq})$
- Temperature Tise in neutralisation - same volume and concentration of $\mathrm{NH}_{3}(\mathrm{aq})$ and $\mathrm{NaOH}(\mathrm{aq})$

Key temms（p．62）

molarity	摩爾濃度	alkaline	鹼性
indicator	指示劑	universal indicator solution	通用指示劑溶液
litmus solution	石芯試液	pH meter	pH 計
litmus paper	石萝試紙	pH sensor	pH 感應器
methyl orange	甲基橙試液	data－logger	數據收集儀
phenolphthalein	酚唒試液	strong acid	強酸
pH scale	pH 標度	weak acid	弱酸
acidic	酸性	strong alkali	強䲓
neutral	中性	weak alkali	弱鹼

Summary (p.63)

1 The molarity of a solution is the number of moles of solute dissolved in $1 \mathrm{dm}^{3}$ of the solution.
Molarity of solution $\left(\mathrm{mol} \mathrm{dm}^{-3}\right)=\frac{\text { number of moles of solute }(\mathrm{mol})}{\text { volume of solution }\left(\mathrm{dm}^{3}\right)}$
2 The table below summarises the colours of some indicators in dilute hydrochloric acid and dilute sodium hydroxide solution.

Indicator	Colour in dilute hydrochloric acid	Colour in dilute sodium hydroxide solution
Litmus solution	red	blue
Methyl orange	red	yellow
Phenolphthalein	colourless	pink

Summary (p.63)

3 The pH of a solution is $-\log _{10}$ of the molar concentration of hydrogen ions in the solution. $\mathrm{pH}=-\log _{10}\left[\mathrm{H}^{+}(\mathrm{aq})\right]$

4 The pH scale is used to measure the degree of acidity or alkalinity of a solution. Its value ranges from 0 to 14 .

increasing acidity

Jing Kung Educational Press All Rights Reserved
increasing alkalinity

Summary (p.63)

5 Methods used to measure the pH values of solutions include:
a) using universal indicator solution;
b) using a pH meter; and
c) using a pH sensor attached to a data-logger.

6 a) A strong acid is an acid that dissociates almost completely in water to give hydrogen ions.
A weak acid is an acid that dissociates partially in water to give hydrogen ions.
b) Compared to a weak acid of the same concentration, a strong acid has

- a lower pH;
- a higher electrical conductivity; higher rate of reaction with meta

/ Summary (p.63)

7 a) A strong alkali is an alkali that dissociates almost completely in water to give hydroxide ions ($\mathrm{OH}^{-}(\mathrm{aq})$). A weak alkali is an alkali that dissociates partially in water to give a small amount of hydroxide ions ($\mathrm{OH}^{-}(\mathrm{aq})$).
b) Compared to a weak alkali of the same concentration, a strong alkali has

- a higher pH;
- a higher electrical conductivity.

8 The strength of an acid or alkali refers to how much it dissociates in water.
The concentration of an acid or alkali refers to the amount of acid or alkali dissolved in a unit volume of eotation.

Note: Questions are rated according to ascending level of difficulty (from 1 to 5):

```
question targeted at level }3\mathrm{ and above;
gige, question targeted at level 4 and above;
G),
**' indicates 1 mark is given for effective communication.
```


Unit Exercise (p.65)

PART I KNOWLEDGE AND UNDERSTANDING

a) number of moles
b) volume (in dm^{3})

1 Complete the following concept map.

phenolphthalein
dilute hydrochloric acid \qquad (d) dilute sodium hydroxide solution: (e)

dissociate almost in water
to give hydrogen ions
c) yellow
d) colourless
e) pink
f) $-\log _{10}\left[\mathrm{H}^{+}(\mathrm{aq})\right]$
g) completely
h) partially
i) completely
j) partially

Unit Exercise (p.65)

PART II MULTIPLE CHOICE QUESTIONS

217.65 g of pure ethanedioic acid crystals $\left((\mathrm{COOH})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right)$ are dissolved in deionised water and made up to $500.0 \mathrm{~cm}^{3}$. What is the molarity of the solution?
(Relative atomic masses: $\mathrm{H}=1.0, \mathrm{C}=12.0, \mathrm{O}=16.0$)
A $\quad 0.280 \mathrm{~mol} \mathrm{dm}^{-3}$
B $\quad 0.430 \mathrm{~mol} \mathrm{dm}^{-3}$
C $\quad 0.560 \mathrm{~mol} \mathrm{dm}^{-3}$
D $\quad 0.883 \mathrm{~mol} \mathrm{dm}^{-3}$
Answer: A
Explanation:
Molar mass of $(\mathrm{COOH})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}=(2 \times 12.0+4 \times 16.0+2 \times 1.0+2 \times 18.0) \mathrm{g} \mathrm{mol}^{-1}$ $=126.0 \mathrm{~g} \mathrm{~mol}^{-1}$
Number of moles of $(\mathrm{COOH})_{2} \bullet 2 \mathrm{H}_{2} \mathrm{O}=\frac{\text { mass }}{\text { molar mass }}$

$$
=\frac{17.65 \mathrm{~g}}{126.0 \mathrm{~g} \mathrm{~mol}^{-1}}
$$

$$
=0.140 \mathrm{~mol}
$$

Molarity of solution $=\frac{\text { number of moles of }(\mathrm{COOH})_{2} \bullet 2 \mathrm{H}_{2} \mathrm{O}}{\text { volume of solution }}$

$$
\begin{aligned}
& =\frac{0.140 \mathrm{~mol}}{\frac{500.0}{1000} \mathrm{dm}^{3}} \\
& =0.280 \mathrm{~mol} \mathrm{dm}^{-3}
\end{aligned}
$$

Unit Exercise (p.65)

3 Methyl orange and phenolphthalein are added to dilute hydrochloric acid separately. Which of the following combinations is correct?

| | Colour of

 methyl orange in acid | |
| :---: | :---: | :---: | | Colour of |
| :---: |
| phenolphthalein in acid |

Unit Exerc ise (p.65)

4 A sample of ethanoic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ has a pH of 3.40. What is the concentration of hydrogen ions in this solution?

A $3.98 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$
B $5.31 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$
C $2.65 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3}$
Answer: A
D $0.294 \mathrm{~mol} \mathrm{dm}^{-3}$

$$
\begin{aligned}
& \text { Explanation: } \\
& \begin{aligned}
\log _{1}\left[\mathrm{H}^{+}(\mathrm{aq})\right] & =-3.40 \\
{\left[\mathrm{H}^{+}(\mathrm{aq})\right] } & =10^{-3.40} \mathrm{~mol} \mathrm{dm}^{-3} \\
& =3.98 \times 10^{-4}
\end{aligned}
\end{aligned}
$$

Unit Exercise (p.65)

5 Which of the following gases, after dissolved in $1 \mathrm{dm}^{3}$ of water, would give a solution with the highest pH ?

A $\quad 0.002 \mathrm{~mol}$ of NO_{2}
B $\quad 0.002 \mathrm{~mol}$ of SO_{2}
C $\quad 0.002 \mathrm{~mol}$ of NH_{3}
D 0.002 mol of HCl
(HKDSE, Paper 1A, 2014, 13)
Answer: C

Unit Exercise (p.65)

6 A trout fishery owner added limestone to his loch to decrease the effects of acid rain. He managed to raise the pH of the water from 5 to 7 .
The concentration of $\mathrm{H}^{+}(\mathrm{aq})$ ions
A increased by a factor of 2.
B increased by a factor of 100 .
C decreased by a factor of 2 .
D decreased by a factor of 100 .
Answer: D
Explanation:
Concentration of $\mathrm{H}^{+}(\mathrm{aq})$ ions in water of $\mathrm{pH} 5=10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$
Concentration of $\mathrm{H}^{+}(\mathrm{aq})$ ions in water of $\mathrm{pH} 7=10^{-7} \mathrm{~mol} \mathrm{dm}^{-3}$
Thus, when the pH of water was raised from 5 to 7 , the concentration of $\mathrm{H}^{+}(\mathrm{aq})$ ions decreased by a fact or 100 .

Unit Exerc ise (p.65)

$750.0 \mathrm{~cm}^{3}$ of $0.6 \mathrm{M} \mathrm{FeSO}_{4}(\mathrm{aq})$ is mixed with $150.0 \mathrm{~cm}^{3}$ of $0.2 \mathrm{M} \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}(\mathrm{aq})$. What is the concentration of $\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})$ ions in the resulting mixture?

A 0.3 M
B 0.4 M
C 0.6 M
D 0.8 M
Answer: C

8 Which of the following statements concerning hydrochloric acid is INCORRECT?

A It is a mineral acid.
B It completely ionises in water.
C It contains aqueous hydrogen ions.
D It does not contain aqueous hydroxide ions.

> (HKDSE, Paper 1A, 2017, 2)

Answer: D

Unit Exerc ise (p.65)

9 (continued)

Explanation:

Options A, B and $\mathrm{C}-\mathrm{HCl}(\mathrm{aq})$ is a strong monobasic acid while $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ is a strong dibasic acid. $1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}(\mathrm{aq})$ contains $1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{H}^{+}(\mathrm{aq})$ ions while $1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ contains more $\mathrm{H}^{+}(\mathrm{aq})$ ions. Thus, the two acids have different pH values, electrical conductivities and initial rates of reaction with magnesium.

Option $\mathrm{D}-\mathrm{HCl}(\mathrm{aq})$ and $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ react with $\mathrm{NaOH}(\mathrm{aq})$ according to the equations:
$\mathrm{HCl}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \longrightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{NaOH}(\mathrm{aq}) \longrightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
Number of moles of HCl in $20 \mathrm{~cm}^{3}$ of $1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}(\mathrm{aq})=1 \mathrm{~mol} \mathrm{dm}^{-3} \times \frac{20}{1000} \mathrm{dm}^{3}$

$$
=0.020 \mathrm{~mol}
$$

This acid requires 0.020 mole of NaOH for complete neutralisation.
Number of moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in $10 \mathrm{~cm}^{3}$ of $1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})=1 \mathrm{~mol} \mathrm{dm}^{-3} \times \frac{10}{1000} \mathrm{dm}^{3}$

$$
=0.010 \mathrm{~mol}
$$

This acid requires 0.020 mole of NaOH for complete neutralisation.

Unit Exercise (p.65)

9 Which of the following statements concerning $20 \mathrm{~cm}^{3}$ 8. $1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}(\mathrm{aq})$ and $10 \mathrm{~cm}^{3}$ of $1 \mathrm{~mol} \mathrm{dm}^{-3}$ $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ is correct?

A They have the same pH value.
B They have the same electrical conductivity.
C They react with magnesium at the same initial rate.
D They require the same number of moles of sodium hydroxide for complete neutralisation.

Answer: D

Unit Exerc ise (p.65)

10 Which of the following statements about $\mathrm{KOH}(\mathrm{aq})$ are correct?
(1) There are more hydroxide ions than hydrogen ions in $\mathrm{KOH}(\mathrm{aq})$.
(2) Adding water to $\mathrm{KOH}(\mathrm{aq})$ can increase its pH .
(3) It gives a pink solution with phenolphthalein.

A (1) and (2) only Explanation:

B (1) and (3) only
C (2) and (3) only
D
(1), (2) and (3)
(2) Adding water to $\mathrm{KOH}(\mathrm{aq})$ makes it less alkaline. Its pH decreases.

Answer:

Unit Exerc ise (p.65)

11 Which of the following statements concerning vinegar is / are correct?
(1) The process of forming hydrogen ions in vinegar is reversible.
(2) Neutralisation occurs when sugar is added to vinegar.
(3) The pH of vinegar used in kitchen is around 1.

A (1) only
B (2) only
C (1) and (3) only
D (2) and (3) only

$$
\text { (HKDSE Duper } 1 A, 2016,18 \text {) }
$$

Answer: A

JK Jing Kung Educational Press All Rights Reserved

Unit Exerc ise (p.65)

12 Comparing the same volume of $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}(\mathrm{aq})$
E) and $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NH}_{3}(\mathrm{aq})$, which of the following are correct?
$0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}(\mathrm{aq}) \quad 0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NH}_{3}(\mathrm{aq})$
(1) higher electrical conductivity
(2) forms a precipitate with $\mathrm{MgSO}_{4}(\mathrm{aq})$
(3) larger temperature rise when completely neutralised by
$1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}(\mathrm{aq})$
lower electrical conductivity does not form a precipitate with $\mathrm{MgSO}_{4}(\mathrm{aq})$ smaller temperature rise when completely neutralised by
$1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}(\mathrm{aq})$

A (1) and (2) only Explanation:
B (1) and (3) only
(2) Both $\mathrm{NaOH}(\mathrm{aq})$ and $\mathrm{NH}_{\mathrm{s}}(\mathrm{aq})$ give Answer: B
(2) and (3) only
(2) and (3)

Unit Exerc ise (p.65)

13 Which of the following statements about sulphuric acid is / are correct?
(1) It is a strong acid.
(2) The pH of $0.001 \mathrm{~mol} \mathrm{dm}^{-3}$ sulphuric acid is 3.0 .
(3) In dilute sulphuric acid, sulphuric acid exists mainly in molecular form.

Explanation:

A (1) only
B (2) only
C (1) and (3) only
D (2) and (3) only
(2) $\left[\mathrm{H}^{+}(\mathrm{aq})\right]$ in an acid with $\mathrm{pH} 3.0=10^{-3.0}$ $=0.0010 \mathrm{~mol} \mathrm{dm}^{-3}$ Sulphuric acid is a strong dibasic acid. The concentration of hydrogen ions in $0.001 \mathrm{~mol} \mathrm{dm}^{-3}$ sulphuric acid is greater than $0.0010 \mathrm{~mol} \mathrm{dm}^{-3}$.
Thus, its pH is less than 3.0.

Unit Exercise (p.65)

PART III STRUCTURED QUESTIONS

14 Calculate the molarity of each solution below.
a) 37.8 g of nitric acid $\left(\mathrm{HNO}_{3}\right)$ in $400.0 \mathrm{~cm}^{3}$ solution
(Relative atomic masses: $\mathrm{H}=1.0, \mathrm{~N}=14.0, \mathrm{O}=16.0$)
b) 87.9 g of lithium sulphate $\left(\mathrm{Li}_{2} \mathrm{SO}_{4}\right)$ in $2.00 \mathrm{dm}^{3}$ solution (Relative atomic masses: $\mathrm{Li}=6.9, \mathrm{O}=16.0, \mathrm{~S}=32.1$)

Unit 15 Molarity, pH scale and strengths of acids and alkalis

Unit Exercise (p.65)
 14 (continued)

a) Molar mass of $\mathrm{HNO}_{3}=(1.0+14.0+3 \times 16.0) \mathrm{g} \mathrm{mol}^{-1}=63.0 \mathrm{~g} \mathrm{~mol}^{-1}$

$$
\text { Number of moles of } \begin{aligned}
\mathrm{HNO}_{3} & =\frac{\text { mass }}{\text { molar mass }} \\
& =\frac{37.8 \mathrm{~g}}{63.0 \mathrm{~g} \mathrm{~mol}} \\
& =0.600 \mathrm{~mol}
\end{aligned}
$$

Molarity of acid $=\frac{\text { number of moles of } \mathrm{HNO}_{3}}{\text { volume of solution }}$

$$
=\frac{0.600 \mathrm{~mol}}{\frac{400.0}{1000} \mathrm{dm}^{3}}
$$

$$
=1.50 \mathrm{~mol} \mathrm{dm}^{-3}(\mathrm{M})
$$

b) Molar mass of $\mathrm{Li}_{2} \mathrm{SO}_{4}=(2 \times 6.9+32.1+4 \times 16.0) \mathrm{g} \mathrm{mol}^{-1}=109.9 \mathrm{~g} \mathrm{~mol}^{-1}$

Number of moles of $\mathrm{Li}_{2} \mathrm{SO}_{4}=\frac{\text { mass }}{\text { molar mass }}$

$$
\begin{aligned}
& =\frac{87.9 \mathrm{~g}}{109.9 \mathrm{~g} \mathrm{~mol}^{-1}} \\
& =0.800 \mathrm{~mol}^{2}
\end{aligned}
$$

Molarity of $\mathrm{Li}_{2} \mathrm{SO}_{4}$ solution $=\frac{\text { number of moles of } \mathrm{Li}_{2} \mathrm{SO}_{4}}{\text { volume of solution }}$

$$
\begin{align*}
& =\frac{0.800 \mathrm{~mol}_{2}^{2.00 \mathrm{dm}^{3}}}{}=0.400 \mathrm{~mol} \mathrm{dm}^{-3}(\mathrm{M}) \tag{1}
\end{align*}
$$

Unit Exerc ise (p.65)

15 What is the mass of solute in each solution below?
a) $250.0 \mathrm{~cm}^{3}$ of $0.600 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium carbonate
$\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$ solution
(Relative atomic masses: $\mathrm{C}=12.0, \mathrm{O}=16.0, \mathrm{Na}=23.0$)
b) $5.00 \mathrm{dm}^{3}$ of $0.106 \mathrm{~mol} \mathrm{dm}^{-3}$ iron(III) chloride $\left(\mathrm{FeCl}_{3}\right)$ solution
(Relative atomic masses: $\mathrm{Cl}=35.5, \mathrm{Fe}=55.8$)

Unit Exercise (p.65)

15 (continued)

a) Number of moles of $\mathrm{Na}_{2} \mathrm{CO}_{3}=$ molarity of solution x volume of solution (in dm^{3})

$$
\begin{align*}
& =0.600 \mathrm{~mol} \mathrm{dm}^{-3} \times \frac{250.0}{1000} \mathrm{dm}^{3} \\
& =0.150 \mathrm{~mol} \tag{1}
\end{align*}
$$

Molar mass of $\mathrm{Na}_{2} \mathrm{CO}_{3}=(2 \times 23.0+12.0+3 \times 16.0) \mathrm{g} \mathrm{mol}^{-1}$

$$
=106.0 \mathrm{~g} \mathrm{~mol}^{-1}
$$

Mass of $\mathrm{Na}_{2} \mathrm{CO}_{3}=$ number of moles of $\mathrm{Na}_{2} \mathrm{CO}_{3} \times$ molar mass of $\mathrm{Na}_{2} \mathrm{CO}_{3}$

$$
\begin{align*}
& =0.150 \mathrm{~mol} \times 106.0 \mathrm{~g} \mathrm{~mol}^{-1} \\
& =15.9 \mathrm{~g} \tag{1}
\end{align*}
$$

b) Number of moles of $\mathrm{FeCl}_{3}=$ molarity of solution x volume of solution (in dm^{3})

$$
\begin{align*}
& =0.106 \mathrm{~mol} \mathrm{dm}^{-3} \times 5.00 \mathrm{dm}^{3} \\
& =0.530 \mathrm{~mol} \tag{1}
\end{align*}
$$

Molar mass of $\mathrm{FeCl}_{3}=(55.8+3 \times 35.5) \mathrm{g} \mathrm{mol}^{-1}$

$$
=162.3 \mathrm{~g} \mathrm{~mol}^{-1}
$$

Mass of $\mathrm{FeCl}_{3}=$ number of moles of $\mathrm{FeCl}_{3} \times$ molar mass of FeCl_{3}

$$
\begin{aligned}
& =0.530 \mathrm{~mol} \times 162.3 \mathrm{~g} \mathrm{~mol}^{-1} \\
& =86.0 \mathrm{~g}
\end{aligned}
$$

Unit Exercise (p.65)

16 Hydrofluoric acid reacts with silicon dioxide to produce hexafluorosilicic acid $\left(\mathrm{H}_{2} \mathrm{SiF}_{6}\right)$. This acid can be added to drinking water to promote good dental health. When added to water all the fluorine in the acid is available as fluoride ions.
The water in a certain city contains $7.60 \times 10^{-6} \mathrm{~mol} \mathrm{dm}^{-3}$ of fluoride ions. What mass of hexafluorosilicic acid should be added to each dm^{3} of water to increase the fluoride level to $4.00 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$?
(Relative atomic masses: $\mathrm{H}=1.0, \mathrm{~F}=19.0, \mathrm{Si}=28.1$)

/ Unit Exercise (p.65)

16 (continued)

Increase in fluoride level $=\left(4.00 \times 10^{-5}-7.60 \times 10^{-6}\right) \mathrm{mol} \mathrm{dm}^{-3}$

$$
\begin{equation*}
=3.24 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3} \tag{1}
\end{equation*}
$$

1 mole of $\mathrm{H}_{2} \mathrm{SiF}_{6}$ gives 6 moles of F^{-}ions.
Number of moles of acid added to each dm^{3} of water $=\frac{3.24 \times 10^{-5}}{6} \mathrm{~mol}$

$$
\begin{equation*}
=5.40 \times 10^{-6} \mathrm{~mol} \tag{1}
\end{equation*}
$$

Molar mass of $\mathrm{H}_{2} \mathrm{SiF}_{6}=(2 \times 1.0+28.1+6 \times 19.0) \mathrm{g} \mathrm{mol}^{-1}$

$$
=144.1 \mathrm{~g} \mathrm{~mol}^{-1}
$$

Mass of acid added to each dm^{3} of water $=$ number of moles of acid x molar mass of acid

$$
\begin{aligned}
& =5.40 \times 10^{-6} \mathrm{~mol} \times 144.1 \mathrm{~g} \mathrm{~mol}^{-1} \\
& =7.78 \times 10^{-4} \mathrm{~g}
\end{aligned}
$$

$\therefore \quad 7.78 \times 10^{-4} \mathrm{~g}$ of acid should be added to each dm^{3} of water.

Unit Exerc ise (p.65)

$17100.0 \mathrm{~cm}^{3}$ of $0.240 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium chloride solution are mixed with $150.0 \mathrm{~cm}^{3}$ of $0.200 \mathrm{~mol} \mathrm{dm}^{-3}$ magnesium chloride solution.
What is the concentration of chloride ions in the resulting solution?

1 mole of NaCl contains 1 mole of Cl^{-}ions.

$$
\text { Number of moles of } \begin{align*}
\mathrm{Cl}^{-} \text {ions in } \mathrm{NaCl}(\mathrm{aq}) & =0.240 \mathrm{~mol} \mathrm{dm}^{-3} \times \frac{100.0}{1000} \mathrm{dm}^{3} \\
& =0.0240 \mathrm{~mol} \tag{1}
\end{align*}
$$

1 mole of MgCl_{2} contains 2 moles of Cl^{-}ions.
Number of moles of Cl^{-}ions in $\mathrm{MgCl}_{2}(\mathrm{aq})=2 \times 0.200 \mathrm{~mol} \mathrm{dm}^{-3} \times \frac{150.0}{1000} \mathrm{dm}^{3}$

$$
\begin{equation*}
=0.0600 \mathrm{~mol} \tag{1}
\end{equation*}
$$

Total number of moles of Cl^{-}ions $=(0.0240+0.0600) \mathrm{mol}$

$$
=0.0840 \mathrm{~mol}
$$

Total volume of resulting solution $=(100.0+150.0) \mathrm{cm}^{3}$

$$
=250.0 \mathrm{~cm}^{3}
$$

Concentration of Cl^{-}ions in resulting mixture $=\frac{0.0840 \mathrm{~mol}}{\frac{250.0}{1000} \mathrm{dm}^{3}}$

$$
=0.336 \mathrm{~mol} \mathrm{dm}^{-3}
$$

\therefore the concentration of chloride ions in the resulting solution is $0.336 \mathrm{~mol} \mathrm{dm}^{-3}$.

Unit Exercise (p.65)

$18 \mathrm{~A} 0.0178 \mathrm{~mol} \mathrm{dm}^{-3}$ nitric acid $\left(\mathrm{HNO}_{3}(\mathrm{aq})\right)$ is prepared. The acid dissociates into hydrogen ions and nitrate ions completely in water. What is its pH value?

1 mole of HNO_{3} dissociates to give 1 mole of hydrogen ions. i.e. concentration of hydrogen ions $=0.0178 \mathrm{~mol} \mathrm{dm}^{-3}$
pH of acid $=-\log _{10}(0.0178)$ (1)

$$
=-(-1.75)=1.75(1)
$$

Unit Exercise (p.65)

19 What is the concentration of hydrogen ions in each of the following substances?
a) Beer with a pH of 4.20
pH of beer $=4.20$
i.e. $\log _{10}\left[\mathrm{H}^{+}(\mathrm{aq})\right]=-4.20$
$\left[\mathrm{H}^{+}(\mathrm{aq})\right]=10^{-4.20} \mathrm{~mol} \mathrm{dm}^{-3}(1)$

$$
=6.31 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}(1)
$$

b) Sea water with a pH of 7.90
pH of sea water $=7.90$
i.e. $\log _{10}\left[\mathrm{H}^{+}(\mathrm{aq})\right]=-7.90$

$$
\begin{aligned}
{\left[\mathrm{H}^{+}(\mathrm{aq})\right] } & =10^{-7.90} \mathrm{~mol} \mathrm{dm}^{-3}(1) \\
& =1.26 \times 10^{-8} \mathrm{~mol} \mathrm{dm}^{-3}(1)
\end{aligned}
$$

Unit Exercise (p.65)

20 The following diagram shows the pH scale and the pH values of some common substances.

Use the information to answer the questions below.
a) Name the most acidic substance. Battery acid (1)
b) Name the acidic substance closest to being neutral. Saliva (1)
c) Name the weakest alkaline substance. Sea water (1)
d) Name the most alkaline substance. Bleach (1)

Unit Exerc ise (p.65)

21 The following table lists the colours of universal indicator solution at different pH values.

Colour	red	orange	yellow	green	blue	navy blue	purple
$\mathbf{p H}$	$0-2$	$3-4$	$5-6$	7	$8-9$	$10-12$	$13-14$

a) Universal indicator solution turns red in $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$ sulphuric acid and orange in $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$ ethanoic acid.
State what these results tell you about the relative strength of these acids.
b) Both $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$ sulphuric acid and $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$ ethanoic acid react with sodium carbonate. State how the reactions would differ. Explain in terms of the relative strength of these acids

Unit Exerc ise (p.65)

21 (continued)

a) Sulphuric acid is stronger than ethanoic acid. (1)
b) In the reaction between sodium carbonate and an acid, sodium carbonate reacts with hydrogen ions in the acid. Reaction of sodium carbonate with sulphuric acid is faster. (1) $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$ sulphuric acid has a higher concentration of hydrogen ions and thus reacts more rapidly than $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$ ethanoic acid with sodium carbonate. (1)

Unit Exerc ise (p.65)

22 The structure of a dibasic acid with chemical formula $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ is shown below:

COOH COOH

A student expected a $0.0500 \mathrm{~mol} \mathrm{dm}^{-3}$ standard $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(\mathrm{aq})$ to have a pH of 1.0. However, the pH of the solution, when measured with a calibrated pH meter, was found to be greater than 1. Explain this observation with the aid of a chemical equation.
Answers for the questions of the public examinations in Hong Kong are not provided (if applicable).

Unit Exerc ise (p.65)

23 A student used the set-up shown below to compare the electrical conductivity of sodium hydroxide solution and aqueous ammonia of the same concentration.

The student used each alkali as an electrolyte in the set-up in turn. It was found that the light bulb glowed much more brightly with sodium hydroxide solution. Explain why. Use ideas about ions.
Sodium hydroxide is a strong alkali. It almost completely dissociates into ions in water to produce sodium ions and hydroxide ions. (1)
Ammonia is a weak alkali. When ammonia dissolves in water, only a small fraction of the molecules react with water molecules to form ammonium ions and hydroxide ions.
Compared with aqueous ammonia of the same concentration, sodium hydrextue solution is abetter conductor of electricity because it has a higher conc

Unit Exerc ise (p.65)

24 Hydrogen fluoride and hydrogen chloride dissolve in water to give hydrofluoric acid and hydrochloric acid respectively.
Hydrofluoric acid is a weak acid but hydrochloric acid is a strong acid.
You are given samples of hydrofluoric acid and hydrochloric acid of the same concentration.
a) Describe and give the results of a test to show that hydrochloric acid is a stronger acid than hydrofluoric acid.
b) Explain, with the aid of a chemical equation, why hydrofluoric acid (HF(aq)) is regarded as a weak acid.

Unit Exerc ise (p.65)

24 (continued)

a) Any one of the following:

- Measure the pH value of each acid. (1) Hydrochloric acid has a lower pH than hydrofluoric acid. (1)
- Measure the electrical conductivity of each acid. (1) Hydrochloric acid has a higher electrical conductivity than hydrofluoric acid. (1)
- Allow each acid to react with magnesium separately. (1) Hydrochloric acid reacts more rapidly than hydrofluoric acid. (1)
b) $\mathrm{HF}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq})$ (1)

Hydrofluoric acid dissociates partially in water to give bydrogen ions. (1)

